留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续制备柔性导热的氮化铝/芳纶纳米纤维复合薄膜

曾繁展 陈宪宏 王建锋

曾繁展, 陈宪宏, 王建锋. 连续制备柔性导热的氮化铝/芳纶纳米纤维复合薄膜[J]. 复合材料学报, 2020, 37(12): 3043-3051. doi: 10.13801/j.cnki.fhclxb.20200428.001
引用本文: 曾繁展, 陈宪宏, 王建锋. 连续制备柔性导热的氮化铝/芳纶纳米纤维复合薄膜[J]. 复合材料学报, 2020, 37(12): 3043-3051. doi: 10.13801/j.cnki.fhclxb.20200428.001
ZENG Fanzhan, CHEN Xianhong, WANG Jianfeng. Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3043-3051. doi: 10.13801/j.cnki.fhclxb.20200428.001
Citation: ZENG Fanzhan, CHEN Xianhong, WANG Jianfeng. Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3043-3051. doi: 10.13801/j.cnki.fhclxb.20200428.001

连续制备柔性导热的氮化铝/芳纶纳米纤维复合薄膜

doi: 10.13801/j.cnki.fhclxb.20200428.001
基金项目: 国家自然科学基金(51973054);湖南省高层次创新人才计划(2018RS3055);湖南省自然科学基金(2019JJ40069)
详细信息
    通讯作者:

    陈宪宏,博士,教授,研究方向为纳米材料及其复合材料 E-mail:xianhongchen@hnu.edu.cn

    王建锋,博士,教授,研究方向为层状纳米复合材料的结构设计、组装及多功能特性 E-mail:wangjianfeng@hnu.edu.cn

  • 中图分类号: TB332

Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films

  • 摘要: 设计制备柔性导热材料对柔性电子器件的热管理具有重要意义。本文基于溶剂剥离的芳纶纳米纤维和氮化铝(AlN)纳米颗粒,采用溶胶-凝胶-薄膜转换方法,连续制备了柔性导热的AlN/芳纶纳米纤维复合薄膜材料。其中,芳纶纳米纤维形成了三维连通的网络结构,提供力学支撑作用;AlN颗粒填充在该网络结构中,赋予复合材料良好的导热性能。结果显示,该复合材料的拉伸强度为65.5 MPa,断裂应变为12%,反复折叠300次后其拉伸强度和断裂应变保持率在90%以上,导热率为13.98 W·(m·K)−1。此外,该复合薄膜显示出良好的绝缘性能和耐热性能,体积电阻率为1.85×1015 Ω·cm、起始热分解温度为524℃。最后,演示该高性能的AlN/芳纶纳米纤维复合薄膜作为柔性基底材料,可用于冷却电子器件。

     

  • 图  1  连续制备AlN/ANF-X薄膜的原材料、装置及成品

    Figure  1.  Raw materials, devices and finished products for continuous preparation of AlN/ANF-X films

    图  2  冻干的AlN/ANF-X 40/60水凝胶内部的SEM图像

    Figure  2.  SEM images of lyophilized AlN/ANF-X 40/60 hydrogels inside (Circles identifies the AlN particles that adhered to ANF)

    图  3  AlN/ANF-X 40/60复合薄膜横截面((a)、(b))和表面((e)、(f))及纯ANF薄膜横截面((c)、(d))和表面((g)、(h))的SEM图像

    Figure  3.  SEM images of AlN/ANF-X 40/60 composite films cross section ((a), (b))and surface ((e), (f)) and pure ANF films cross section ((c), (d)) and surface ((g), (h))

    图  4  纯ANF薄膜和AlN/ANF-X 40/60复合薄膜的FTIR图谱

    Figure  4.  FTIR spectra of pure ANF films and AlN/ANF-X 40/60 composite films

    图  5  纯ANF薄膜和AlN/ANF-X复合薄膜的拉伸应力-应变曲线(a)、复合薄膜折叠过程中的强度保持率和应变保持率(b)

    Figure  5.  Tensile stress-strain curves of pure ANF films and AlN/ANF-X composite films (a) and strength retention and strain retention during folding cycles (b)

    图  6  纯ANF薄膜和AlN/ANF-X复合薄膜的体积电阻率

    Figure  6.  Volume resistivity of pure ANF film and AlN/ANF-X composite films

    图  7  纯ANF薄膜和AlN/ANF-X 40/60复合膜的DSC曲线(a)以及AlN、ANF和AlN/ANF-X复合膜的TGA曲线(b)

    Figure  7.  DSC heating curves of pure ANF films and AlN/ANF-X 40/60 composite films(a), as well as TGA curves of AlN, ANF and AlN/ANF-X composite films(b)

    图  9  薄膜在同一热源下的红外热像图

    Figure  9.  Infrared thermal image of the films under the same heat source ((1) Pure ANF; (2) AlN/ANF-X 20/80; (3) AlN/ANF-X 40/60)

    图  8  纯ANF薄膜和AlN/ANF-X复合薄膜的导热系数

    Figure  8.  Thermal conductivities of pure ANF film and AlN/ANF-X composite films

    图  10  AlN/ANF-X40/60复合薄膜的热导率与报道的AlN/聚合物复合材料比较

    Figure  10.  Thermal conductivity of the AlN/ANF-X 40/60 composite films compared with reported AlN/polymer composite materials (Mass fraction in the figure indicates the content of aluminum nitride particles)

    图  11  贴有不同薄膜的LED芯片

    Figure  11.  Photographs of the LED chips with different films

    图  12  贴有不同薄膜的LED芯片在15~165 s内工作时的红外热像图

    Figure  12.  Infrared thermal images of LED chips with different films working within 15-165 s

    图  13  LED芯片的温度随工作时间的变化曲线

    Figure  13.  Temperature evolution curves of the LED chips with working time

    表  1  氮化铝/芳纶纳米纤维三维网络(AlN/ANF-X)复合材料配比

    Table  1.   Proportion of aluminum nitride/aramid nanofiber 3D network (AlN/ANF-X) composites

    MaterialAlN/wt%ANF/wt%
    Pure ANF 0 100
    AlN/ANF-X 20/80 20 80
    AlN/ANF-X 40/60 40 60
    下载: 导出CSV

    表  2  纯ANF薄膜和AlN/ANF-X复合薄膜的热扩散系数、比热容、密度和导热系数

    Table  2.   Thermal diffusivity, specific heat capacity, density and thermal conductivity of pure ANF film and AlN/ANF-X composite films

    Materialα/(mm2·s−1)Cp/(J·(g·℃)−1)ρ/(g·cm−3)K/(W·(m·K)−1)
    ANF 5.320 1.249 1.131 7.51
    AlN/ANF-X 20/80 7.516 1.069 1.114 8.94
    AlN/ANF-X 40/60 11.725 1.196 0.997 13.98
    Notes: K—Thermal conductivity; α—Thermal diffusivity coefficient; Cp—Heat capacity; ρ—Density.
    下载: 导出CSV
  • [1] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [2] SONG W L, WANG W, VECA L M, et al. Polymer/carbon nanocomposites for enhanced thermal transport properties-carbon nanotubes versus graphene sheets as nanoscale fillers[J]. Journal of Materials Chemistry,2012,22(33):17133-17139. doi: 10.1039/c2jm32469e
    [3] CHEN J, HUANG X, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290
    [4] SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of Physics & Chemistry of Solids,1987,48(7):641-647.
    [5] YU S, HING P, HU X. Thermal conductivity of polystyrene-aluminum nitride composite[J]. Composites Part A: Applied Science and Manufacturing,2002,33(2):289-292. doi: 10.1016/S1359-835X(01)00107-5
    [6] CAO Y, IRWIN P C, YOUNSI K. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):797-807. doi: 10.1109/TDEI.2004.1349785
    [7] CHOY C L. Thermal conductivity of polymers[J]. Polymer,1977,18(10):984-1004. doi: 10.1016/0032-3861(77)90002-7
    [8] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [9] WU G, WANG Y, WANG K, et al. The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites[J]. RSC Advances,2016,6(104):102542-102548. doi: 10.1039/C6RA22794E
    [10] KIM K, YOO M, AHN K, et al. Thermal and mechanical properties of AlN/BN-filled PVDF composite for solar cell backsheet application[J]. Ceramics International,2015,41(1):179-187. doi: 10.1016/j.ceramint.2014.08.056
    [11] ZHANG K, PENG T, ZHANG Y H, et al. Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices[J]. Carbohydrate Polymers,2019,213:228-235. doi: 10.1016/j.carbpol.2019.02.087
    [12] GARCÍA J M, GARCÍA F C, SERNA F, et al. High-performance aromatic polyamides[J]. Progress in Polymer Science,2010,35(5):623-686. doi: 10.1016/j.progpolymsci.2009.09.002
    [13] CHATZI E G, KOENIG J L. Morphology and structure of kevlar fibers: a review[J]. Polymer-Plastics Technology and Engineering,1987,26:229-270. doi: 10.1080/03602558708071938
    [14] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: A new nanoscale building block[J]. ACS Nano,2011,5(9):6945-6954. doi: 10.1021/nn2014003
    [15] KUANG Q, ZHANG D, YU J C, et al. Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers[J]. The Journal of Physical Chemistry C,2015,119(49):27467-27477. doi: 10.1021/acs.jpcc.5b08856
    [16] ZHU J, YANG M, EMRE A, et al. Branched aramid nanofibers[J]. Angewandte Chemie International Edition,2017,56(39):11744-11748. doi: 10.1002/anie.201703766
    [17] TSAGAROPOULOS G, EISENBERG A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers: Similarities and differences with random ionomers[J]. Macromolecules,1995,28(18):6067-6077. doi: 10.1021/ma00122a011
    [18] PAN C, KOU K, WU G, et al. Fabrication and characterization of AlN/PTFE composites with low dielectric constant and high thermal stability for electronic packaging[J]. Journal of Materials Science: Materials in Electronics,2016,27(1):286-292. doi: 10.1007/s10854-015-3752-2
    [19] CHEN P, KOU K C, ZHANG Y, et al. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles[J]. Composites Part B: Engineering,2018,153:1-8. doi: 10.1016/j.compositesb.2018.07.019
    [20] WU S Y, HUANG Y L, MA C C M, et al. Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(11):1573-1583. doi: 10.1016/j.compositesa.2011.06.009
    [21] KIM K, KIM J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content[J]. Composites Part B: Engineering,2016,93:67-74. doi: 10.1016/j.compositesb.2016.02.052
    [22] ZHANG T, WU X, LUO T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties[J]. The Journal of Physical Chemistry C,2014,118(36):21148-21159. doi: 10.1021/jp5051639
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  431
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 录用日期:  2020-04-19
  • 网络出版日期:  2020-04-28
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回