[1] |
VANESA G P, VICTOR C, COLERA M, et al. Water-borne polyurethane dispersions obtained with polycar-bonate of hexanediol intended for use as coatings[J]. Progress in Organic Coatings,2011,71(2):136-146. doi: 10.1016/j.porgcoat.2011.01.006
|
[2] |
ARSHAD N, ZIA K M, JABEEN F, et al. Synthesis, characterization of novel chitosan based water dis-persible polyurethanes and their potential deployment as antibacterial textile finish[J]. International Journal of Biological Macromolecules,2018,111:485-492. doi: 10.1016/j.ijbiomac.2018.01.032
|
[3] |
LI J, CUI J C, YANG J Y, et al. Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings[J]. Composites Science and Technology,2016,129:30-37. doi: 10.1016/j.compscitech.2016.04.017
|
[4] |
LEIRE U, ANA A V, AINARA S, et al. Hybrid and bio-compatible cellulose/polyurethane nanocomposites with water-activated shape memory properties[J]. Carbohydrate Polymers,2019,216:86-96. doi: 10.1016/j.carbpol.2019.04.010
|
[5] |
WANG Y X, TIAN H F, ZHANG L N. Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane[J]. Carbohydrate Polymers,2010,80(3):665-671. doi: 10.1016/j.carbpol.2009.10.043
|
[6] |
REN L F, GUO X D, ZHAO Y X, et al. Synthesis and properties of waterborne polyurethane incorporated with phenolic acid grafted oligochitosan[J]. Progress in Organic Coatings,2019,135:410-416. doi: 10.1016/j.porgcoat.2019.06.030
|
[7] |
XU J C, JIANG Y, ZHANG T, et al. Synthesis of UV-curing waterborne polyurethane-acrylate coating and its photopolymerization kinetics using FT-IR and photo-DSC methods[J]. Progress in Organic Coatings,2018,122:10-18. doi: 10.1016/j.porgcoat.2018.05.008
|
[8] |
WEN J T, SUN Z, XIANG J, et al. Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains[J]. Applied Surface Science,2019,494:610-618. doi: 10.1016/j.apsusc.2019.07.170
|
[9] |
葛震, 周闪闪, 罗运军. 纳米SiO2/有机硅改性水性聚氨酯复合材料的制备及性能[J]. 复合材料学报, 2014, 31(4):909-915.GE Z, ZHOU S S, LUO Y J. Preparation and properties of nano-SiO2/organosilicon modified waterborne polyurethane composites[J]. Acta Materiae Compositae Sinica,2014,31(4):909-915(in Chinese).
|
[10] |
ZHAI L L, WANG Y, PENG F, et al. Synthesis of TiO2-SiO2/waterborne polyurethane hybrid with amino-siloxane terminated via a sol-gel process[J]. Materials Letters,2012,89:81-85. doi: 10.1016/j.matlet.2012.08.083
|
[11] |
MO Q F, LI W Z, YANG H J, et al. Water resistance and corrosion protection properties of waterborne polyurethane coating enhanced by montmorillonite modified with Ce3+[J]. Progress in Organic Coatings,2019,136:105213. doi: 10.1016/j.porgcoat.2019.105213
|
[12] |
LI X X, CHEN Y Q, WU S L. Preparation of aqueous graphene/water-borne polyurethane nanocomposites with enhanced thermal properties[J]. Polymer Materials Science & Engineering,2017,33(7):138-143.
|
[13] |
PEARTON S J, NORTON D P, IP K, et al. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science,2005,50(3):293-340. doi: 10.1016/j.pmatsci.2004.04.001
|
[14] |
陈枭, 徐涛, 雷华, 等. 多功能纳米 ZnO/PMMA复合材料的制备及性能[J]. 复合材料学报, 2018, 35(2):245-252.CHEN X, XU T, LEI H, et al. Preparation and proper ties of multifunctional nano ZnO/PMMA composites[J]. Acta Materiae Compositae Sinica,2018,35(2):245-252(in Chinese).
|
[15] |
郭欢欢, 张敏, 李成涛, 等. 四针状ZnO晶须改性对ZnO/聚丁二酸丁二醇酯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1800-1809.GUO H H, ZHANG M, LI C T, et al. Effect of modified tetrapod-shaped ZnO whisker on the properties of poly(butylenesuccinate)-based composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1800-1809(in Chinese).
|
[16] |
MA X Y, ZHANG W D. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane[J]. Polymer Degradation and Stability,2009,94(7):1103-1109. doi: 10.1016/j.polymdegradstab.2009.03.024
|
[17] |
符方宝, 王欢, 钟锐生, 等. 木质素/氧化锌复合颗粒的制备及在水性聚氨酯中的应用[J]. 高等学校化学学报, 2018, 39(10):233-240.FU F B, WANG H, ZHONG R S, et al. Preparation of lignin/ZnO composite nanoparticles and its application in waterborne polyurethane[J]. Chemical Journal of Chinese Universities,2018,39(10):233-240(in Chinese).
|
[18] |
CHRISTOPHER G, KULANDAINATHAN M A, ARICHANDRAN G H. Biopolymers nanocomposite for material protection: Enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings[J]. Progress in Organic Coatings,2016,99:91-102. doi: 10.1016/j.porgcoat.2016.05.012
|
[19] |
KASI G, VISWANATHAN K, SADEGHI K, et al. Optical, thermal, and structural properties of polyurethane in Mg-doped zinc oxide nanoparticles for anti-bacterial activity[J]. Progress in Organic Coatings,2019,133:309-315. doi: 10.1016/j.porgcoat.2019.04.066
|
[20] |
KATHALEWAR M, SABNIS A, WAGHOO G. Effect of incorporation of surface treated zinc oxide on non-isocyanate polyurethane based nano-composite coatings[J]. Progress in Organic Coatings,2013,76(9):1215-1229. doi: 10.1016/j.porgcoat.2013.03.027
|
[21] |
姜国飞, 李旭飞, 刘芳, 等. 纳米ZnO-氧化石墨烯及ZnO-氧化石墨烯/水性聚氨酯复合涂层的抗菌性能[J]. 复合材料学报, 2018, 35(7):1930-1938.JIANG G F, LI X F, LIU F, et al. Antibacterial properties of nano ZnO-graphene oxide and ZnO-graphene oxide/waterborne polyurethane composite coating[J]. Acta Materiae Compositae Sinica,2018,35(7):1930-1938(in Chinese).
|
[22] |
CHEN S, ZHOU B, HU W, et al. Polyol mediated synthesis of ZnO nanoparticles templated by bacterial cellulose[J]. Carbohydrate Polymers,2013,92(2):1953-1959. doi: 10.1016/j.carbpol.2012.11.059
|
[23] |
HU W, CHEN S, ZHOU B, et al. Facile synthesis of ZnO nanoparticles based on bacterial cellulose[J]. Materials Science and Engineering: B,2010,170(1-3):88-92. doi: 10.1016/j.mseb.2010.02.034
|
[24] |
LI X, ZHANG X, LI L, et al. Preparation of nano-ZnO/regenerated cellulose composite particles via co-gelation and low-temperature hydrothermal synthesis[J]. Materials Letters,2016,175:122-125. doi: 10.1016/j.matlet.2016.04.012
|
[25] |
JANPETCH N, SAITO N, RUJIRAVANIT R. Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications[J]. Carbohydrate Polymers,2016,148:335-344. doi: 10.1016/j.carbpol.2016.04.066
|
[26] |
ZHANG G J, LIAO Q L, MA M Y, et al. Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors[J]. Nano Energy,2018,52:501-509. doi: 10.1016/j.nanoen.2018.08.020
|
[27] |
JEBEL F S, ALMASI H. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films[J]. Carbohydrate Polymers,2016,149:8-19. doi: 10.1016/j.carbpol.2016.04.089
|
[28] |
ZHOU X L, LI X B, GAO Y N, et al. Preparation and characterization of 2D ZnO nanosheets/regenerated cellulose photocatalytic composite thin films by a two-step synthesis method[J]. Materials Letters,2019,234:26-29. doi: 10.1016/j.matlet.2018.09.070
|
[29] |
DINCA V, MOCANU A, ISOPENCU G, et al. Bio-compatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties[J]. Arabian Journal of Chemistry,2020,13(1):3521-3533. doi: 10.1016/j.arabjc.2018.12.003
|
[30] |
中国国家标准化管理委员会. 塑料薄膜或薄片拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People’s Repulic of China. Determination of tensile stress-strain properties of plastic films or sheets: GB/T 1040.3—2006[S]. Beijing: China Standards Press, 2007(in Chinese).
|
[31] |
WAHID F, DUAN Y X, HU X H, et al. A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties[J]. International Journal of Biological Macromolecules,2019,132:692-700. doi: 10.1016/j.ijbiomac.2019.03.240
|