留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能

吴景 曾威 邝美霞 钟成

吴景, 曾威, 邝美霞, 等. 细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能[J]. 复合材料学报, 2020, 37(12): 3026-3034. doi: 10.13801/j.cnki.fhclxb.20200407.001
引用本文: 吴景, 曾威, 邝美霞, 等. 细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能[J]. 复合材料学报, 2020, 37(12): 3026-3034. doi: 10.13801/j.cnki.fhclxb.20200407.001
WU Jing, ZENG Wei, KUANG Meixia, et al. Preparation and properties of bacterial cellulose-ZnO/waterborne polyurethane composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3026-3034. doi: 10.13801/j.cnki.fhclxb.20200407.001
Citation: WU Jing, ZENG Wei, KUANG Meixia, et al. Preparation and properties of bacterial cellulose-ZnO/waterborne polyurethane composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3026-3034. doi: 10.13801/j.cnki.fhclxb.20200407.001

细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20200407.001
基金项目: 天津市自然科学基金(19PTSYJC00060;19JCZDJC34700)
详细信息
    通讯作者:

    曾威,博士,副研究员,硕士生导师,研究方向为有机/无机杂化体系的制备与应用 E-mail:zwei@tust.edu.cn

  • 中图分类号: TB332

Preparation and properties of bacterial cellulose-ZnO/waterborne polyurethane composite films

  • 摘要: 以细菌纤维素(BC)为模板,以ZnSO4、NaOH和尿素为原料,通过水热法制备了具有新型刷状结构的细菌纤维素-ZnO(BC-ZnO)复合颗粒,尺寸约为3~5 μm,其中BC含量约为19wt%,并对其可能的形成机制进行阐述。将不同含量的BC-ZnO复合颗粒通过原位聚合法引入到水性聚氨酯(WPU)中得到细菌纤维素-ZnO/水性聚氨酯(BC-ZnO/WPU)复合薄膜,对复合膜的结构与性能进行了表征。结果表明:复合颗粒在WPU中分散良好;复合膜的拉伸强度在BC-ZnO含量为1.0wt%时达到最高,相较于纯WPU提高了84.6%;吸水率从16.5%降到4.9%;BC-ZnO的引入提高了复合膜的初始热稳定性;复合膜具有良好的抗菌性,当BC-ZnO含量为1.3wt%时,对金黄色葡萄球菌的抗菌率超过99%,对大肠杆菌的抗菌率超过85%。

     

  • 图  1  细菌纤维素(BC)-ZnO复合颗粒的XRD图谱

    Figure  1.  XRD patterns of bacterial cellulose (BC)-ZnO composite particles

    图  2  BC-ZnO复合颗粒的EDS分析

    Figure  2.  EDS spectrum analysis of BC-ZnO composite particles

    图  3  BC-ZnO复合颗粒的热失重曲线

    Figure  3.  TG curve of BC-ZnO composite particles

    图  4  不同反应时间BC-ZnO的FE-SEM图像

    Figure  4.  FE-SEM images of BC-ZnO with different reaction times

    图  5  BC溶胶的POM图像

    Figure  5.  POM image of BC sol

    图  6  BC-ZnO的TEM图像

    Figure  6.  TEM image of the BC-ZnO

    图  7  刷状BC-ZnO复合颗粒的合成示意图

    Figure  7.  Schematic illustration of the synthesis of the brush-like BC-ZnO composite particles

    图  8  水性聚氨酯(WPU)和BC-ZnO/WPU的FTIR图谱

    Figure  8.  FTIR spectra of WPU and BC-ZnO/waterborne polyurethane (WPU)

    图  9  WPU和BC-ZnO/WPU横断面SEM图像

    Figure  9.  Cross-sectional SEM images of WPU and BC-ZnO/WPU

    图  10  BC-ZnO含量对BC-ZnO/WPU复合膜力学性能的影响

    Figure  10.  Effect of BC-ZnO content on the mechanical properties of BC-ZnO/WPU composite films

    图  11  不同BC-ZnO含量的BC-ZnO/WPU复合膜的吸水率

    Figure  11.  Water uptake of BC-ZnO/WPU composite films with different BC-ZnO contents

    图  12  不同BC-ZnO含量的BC-ZnO/WPU复合膜的热分解曲线

    Figure  12.  TG curves of BC-ZnO/WPU composite films with different BC-ZnO contents

    图  13  BC-ZnO/WPU复合膜对大肠杆菌和金黄色葡萄球菌的抗菌作用

    Figure  13.  Antibacterial effect of BC-ZnO/WPU composite films against E.coli and S.aureus

  • [1] VANESA G P, VICTOR C, COLERA M, et al. Water-borne polyurethane dispersions obtained with polycar-bonate of hexanediol intended for use as coatings[J]. Progress in Organic Coatings,2011,71(2):136-146. doi: 10.1016/j.porgcoat.2011.01.006
    [2] ARSHAD N, ZIA K M, JABEEN F, et al. Synthesis, characterization of novel chitosan based water dis-persible polyurethanes and their potential deployment as antibacterial textile finish[J]. International Journal of Biological Macromolecules,2018,111:485-492. doi: 10.1016/j.ijbiomac.2018.01.032
    [3] LI J, CUI J C, YANG J Y, et al. Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings[J]. Composites Science and Technology,2016,129:30-37. doi: 10.1016/j.compscitech.2016.04.017
    [4] LEIRE U, ANA A V, AINARA S, et al. Hybrid and bio-compatible cellulose/polyurethane nanocomposites with water-activated shape memory properties[J]. Carbohydrate Polymers,2019,216:86-96. doi: 10.1016/j.carbpol.2019.04.010
    [5] WANG Y X, TIAN H F, ZHANG L N. Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane[J]. Carbohydrate Polymers,2010,80(3):665-671. doi: 10.1016/j.carbpol.2009.10.043
    [6] REN L F, GUO X D, ZHAO Y X, et al. Synthesis and properties of waterborne polyurethane incorporated with phenolic acid grafted oligochitosan[J]. Progress in Organic Coatings,2019,135:410-416. doi: 10.1016/j.porgcoat.2019.06.030
    [7] XU J C, JIANG Y, ZHANG T, et al. Synthesis of UV-curing waterborne polyurethane-acrylate coating and its photopolymerization kinetics using FT-IR and photo-DSC methods[J]. Progress in Organic Coatings,2018,122:10-18. doi: 10.1016/j.porgcoat.2018.05.008
    [8] WEN J T, SUN Z, XIANG J, et al. Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains[J]. Applied Surface Science,2019,494:610-618. doi: 10.1016/j.apsusc.2019.07.170
    [9] 葛震, 周闪闪, 罗运军. 纳米SiO2/有机硅改性水性聚氨酯复合材料的制备及性能[J]. 复合材料学报, 2014, 31(4):909-915.

    GE Z, ZHOU S S, LUO Y J. Preparation and properties of nano-SiO2/organosilicon modified waterborne polyurethane composites[J]. Acta Materiae Compositae Sinica,2014,31(4):909-915(in Chinese).
    [10] ZHAI L L, WANG Y, PENG F, et al. Synthesis of TiO2-SiO2/waterborne polyurethane hybrid with amino-siloxane terminated via a sol-gel process[J]. Materials Letters,2012,89:81-85. doi: 10.1016/j.matlet.2012.08.083
    [11] MO Q F, LI W Z, YANG H J, et al. Water resistance and corrosion protection properties of waterborne polyurethane coating enhanced by montmorillonite modified with Ce3+[J]. Progress in Organic Coatings,2019,136:105213. doi: 10.1016/j.porgcoat.2019.105213
    [12] LI X X, CHEN Y Q, WU S L. Preparation of aqueous graphene/water-borne polyurethane nanocomposites with enhanced thermal properties[J]. Polymer Materials Science & Engineering,2017,33(7):138-143.
    [13] PEARTON S J, NORTON D P, IP K, et al. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science,2005,50(3):293-340. doi: 10.1016/j.pmatsci.2004.04.001
    [14] 陈枭, 徐涛, 雷华, 等. 多功能纳米 ZnO/PMMA复合材料的制备及性能[J]. 复合材料学报, 2018, 35(2):245-252.

    CHEN X, XU T, LEI H, et al. Preparation and proper ties of multifunctional nano ZnO/PMMA composites[J]. Acta Materiae Compositae Sinica,2018,35(2):245-252(in Chinese).
    [15] 郭欢欢, 张敏, 李成涛, 等. 四针状ZnO晶须改性对ZnO/聚丁二酸丁二醇酯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1800-1809.

    GUO H H, ZHANG M, LI C T, et al. Effect of modified tetrapod-shaped ZnO whisker on the properties of poly(butylenesuccinate)-based composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1800-1809(in Chinese).
    [16] MA X Y, ZHANG W D. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane[J]. Polymer Degradation and Stability,2009,94(7):1103-1109. doi: 10.1016/j.polymdegradstab.2009.03.024
    [17] 符方宝, 王欢, 钟锐生, 等. 木质素/氧化锌复合颗粒的制备及在水性聚氨酯中的应用[J]. 高等学校化学学报, 2018, 39(10):233-240.

    FU F B, WANG H, ZHONG R S, et al. Preparation of lignin/ZnO composite nanoparticles and its application in waterborne polyurethane[J]. Chemical Journal of Chinese Universities,2018,39(10):233-240(in Chinese).
    [18] CHRISTOPHER G, KULANDAINATHAN M A, ARICHANDRAN G H. Biopolymers nanocomposite for material protection: Enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings[J]. Progress in Organic Coatings,2016,99:91-102. doi: 10.1016/j.porgcoat.2016.05.012
    [19] KASI G, VISWANATHAN K, SADEGHI K, et al. Optical, thermal, and structural properties of polyurethane in Mg-doped zinc oxide nanoparticles for anti-bacterial activity[J]. Progress in Organic Coatings,2019,133:309-315. doi: 10.1016/j.porgcoat.2019.04.066
    [20] KATHALEWAR M, SABNIS A, WAGHOO G. Effect of incorporation of surface treated zinc oxide on non-isocyanate polyurethane based nano-composite coatings[J]. Progress in Organic Coatings,2013,76(9):1215-1229. doi: 10.1016/j.porgcoat.2013.03.027
    [21] 姜国飞, 李旭飞, 刘芳, 等. 纳米ZnO-氧化石墨烯及ZnO-氧化石墨烯/水性聚氨酯复合涂层的抗菌性能[J]. 复合材料学报, 2018, 35(7):1930-1938.

    JIANG G F, LI X F, LIU F, et al. Antibacterial properties of nano ZnO-graphene oxide and ZnO-graphene oxide/waterborne polyurethane composite coating[J]. Acta Materiae Compositae Sinica,2018,35(7):1930-1938(in Chinese).
    [22] CHEN S, ZHOU B, HU W, et al. Polyol mediated synthesis of ZnO nanoparticles templated by bacterial cellulose[J]. Carbohydrate Polymers,2013,92(2):1953-1959. doi: 10.1016/j.carbpol.2012.11.059
    [23] HU W, CHEN S, ZHOU B, et al. Facile synthesis of ZnO nanoparticles based on bacterial cellulose[J]. Materials Science and Engineering: B,2010,170(1-3):88-92. doi: 10.1016/j.mseb.2010.02.034
    [24] LI X, ZHANG X, LI L, et al. Preparation of nano-ZnO/regenerated cellulose composite particles via co-gelation and low-temperature hydrothermal synthesis[J]. Materials Letters,2016,175:122-125. doi: 10.1016/j.matlet.2016.04.012
    [25] JANPETCH N, SAITO N, RUJIRAVANIT R. Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications[J]. Carbohydrate Polymers,2016,148:335-344. doi: 10.1016/j.carbpol.2016.04.066
    [26] ZHANG G J, LIAO Q L, MA M Y, et al. Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors[J]. Nano Energy,2018,52:501-509. doi: 10.1016/j.nanoen.2018.08.020
    [27] JEBEL F S, ALMASI H. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films[J]. Carbohydrate Polymers,2016,149:8-19. doi: 10.1016/j.carbpol.2016.04.089
    [28] ZHOU X L, LI X B, GAO Y N, et al. Preparation and characterization of 2D ZnO nanosheets/regenerated cellulose photocatalytic composite thin films by a two-step synthesis method[J]. Materials Letters,2019,234:26-29. doi: 10.1016/j.matlet.2018.09.070
    [29] DINCA V, MOCANU A, ISOPENCU G, et al. Bio-compatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties[J]. Arabian Journal of Chemistry,2020,13(1):3521-3533. doi: 10.1016/j.arabjc.2018.12.003
    [30] 中国国家标准化管理委员会. 塑料薄膜或薄片拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Repulic of China. Determination of tensile stress-strain properties of plastic films or sheets: GB/T 1040.3—2006[S]. Beijing: China Standards Press, 2007(in Chinese).
    [31] WAHID F, DUAN Y X, HU X H, et al. A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties[J]. International Journal of Biological Macromolecules,2019,132:692-700. doi: 10.1016/j.ijbiomac.2019.03.240
  • 加载中
图(13)
计量
  • 文章访问数:  1566
  • HTML全文浏览量:  571
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 录用日期:  2020-04-06
  • 网络出版日期:  2020-04-08
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回