留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响

刘志明 许昶

刘志明, 许昶. 胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响[J]. 复合材料学报, 2020, 37(11): 2825-2832. doi: 10.13801/j.cnki.fhclxb.20200121.003
引用本文: 刘志明, 许昶. 胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响[J]. 复合材料学报, 2020, 37(11): 2825-2832. doi: 10.13801/j.cnki.fhclxb.20200121.003
LIU Zhiming, XU Chang. Effect of adhesive thickness on mechanical properties of carbon fiber/bismaleimide resin composite flat-joggle-flat hybrid (bonded-bolted) joint[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2825-2832. doi: 10.13801/j.cnki.fhclxb.20200121.003
Citation: LIU Zhiming, XU Chang. Effect of adhesive thickness on mechanical properties of carbon fiber/bismaleimide resin composite flat-joggle-flat hybrid (bonded-bolted) joint[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2825-2832. doi: 10.13801/j.cnki.fhclxb.20200121.003

胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20200121.003
基金项目: 十三五国家重点研发计划:车体、设备舱及转向架疲劳可靠性研究(2016YFB1200505-011)
详细信息
    通讯作者:

    刘志明,博士,教授,研究方向为结构疲劳及其可靠性 E-mail:zhmliu1@m.bjtu.edu.cn

  • 中图分类号: TB331

Effect of adhesive thickness on mechanical properties of carbon fiber/bismaleimide resin composite flat-joggle-flat hybrid (bonded-bolted) joint

  • 摘要: 以碳纤维/双马来酰亚胺(BMI)树脂复合材料平-折-平(FJF)连接接头为对象,通过试验对比分析了特定胶层厚度下碳纤维/BMI树脂复合材料FJF连接接头的静强度和疲劳性能,并探究了胶层厚度对碳纤维/BMI树脂复合材料FJF混合接头力学性能的影响。利用背面应变技术对碳纤维/BMI树脂复合材料FJF混合接头搭接区端部胶层开裂进行监测。利用有限元软件ABAQUS对不同胶层厚度下碳纤维/BMI树脂复合材料FJF混合接头搭接区胶层应力分布进行了分析。结果表明,碳纤维/BMI树脂复合材料FJF混合接头的平均拉伸极限载荷、搭接区端部胶层开裂平均循环次数和平均疲劳寿命均随着胶层厚度在0.1~0.3 mm范围内增加而增大。不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头均经历相同的失效阶段,即搭接区胶层端部开裂,胶层沿搭接区断裂扩展,最终靠近加载端孔边拉伸断裂,呈±45°断口。随着胶层厚度在0.1~0.3 mm范围的增加,搭接区端部胶层剥离应力、剪切应力及孔边胶层压缩应力均减小。在胶层厚度为0.1~0.3 mm范围内,剪应力是胶层破坏的控制因素。

     

  • 图  1  碳纤维/双马来酰亚胺(BMI)树脂复合材料平-折-平(FJF)混合连接接头示意图

    Figure  1.  Schematic diagram of carbon fiber/bismaleimide (BMI) resin composite flat-joggle-flat (FJF) hybrid joint

    d—Hole diameter; W—Width; E—Edge distance; ta—Laminate thickness; tc—Adhesive thickness; r1—Larger fillet diameter; r2—Smaller fillet diameter; θ—Angle between flat and joggle segment

    图  2  拉伸测试设备

    Figure  2.  Tensile testing equipment

    图  3  贴片位置

    Figure  3.  Strain gage location

    图  4  不同厚度下三种碳纤维/BMI树脂复合材料FJF连接接头极限载荷对比

    Figure  4.  Ultimate load comparison of three kinds of carbon fiber/BMI resin composite FJF joints with different adhesive thicknesses

    图  5  三种碳纤维/BMI树脂复合材料FJF连接接头典型载荷-位移曲线

    Figure  5.  Typical load-displacement curves of three kinds of carbon fiber/ BMI resin composite FJF joints

    图  6  三种碳纤维/BMI树脂复合材料FJF连接接头最终失效模式

    Figure  6.  Final failure modes of three kinds of carbon fiber/BMI resin composite FJF joints

    图  7  不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头典型载荷-位移曲线

    Figure  7.  Typical load-displacement curves of carbon fiber/BMI resin composite FJF hybrid joints with different adhesive thicknesses

    图  8  三种碳纤维/BMI树脂复合材料FJF连接接头平均疲劳寿命对比

    Figure  8.  Average fatigue life comparison of three kinds of carbon fiber/BMI resin composite FJF joints

    Pmax—Maximum load; Pu—Static load; N—Load cycles

    图  9  不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头平均疲劳寿命对比

    Figure  9.  Average fatigue life comparison of carbon fiber/BMI resin composite FJF hybrid joints with different adhesive thicknesses

    图  10  载荷等级为70%时碳纤维/BMI树脂复合材料FJF含胶接头背面应变值

    Figure  10.  Backface strain values of carbon fiber/BMI resin composite FJF joints with adhesive when load level equals 70%

    图  11  碳纤维/BMI树脂复合材料FJF混合接头三维有限元模型

    Figure  11.  3D finite element model of carbon fiber/BMI resin composite FJF hybrid joint

    Fp—Tensile load or pulling force

    图  12  碳纤维/BMI树脂复合材料FJF混合接头搭接区胶层剥离应力分布

    Figure  12.  Adhesive peel stress distribution in overlap zone of carbon fiber/BMI resin composite FJF hybrid joints

    图  13  碳纤维/BMI树脂复合材料FJF混合接头搭接区胶层剪切应力分布

    Figure  13.  Adhesive shear stress distribution in overlap zone of carbon fiber/BMI resin composite FJF hybrid joints

    表  1  碳纤维/BMI树脂复合材料FJF接头拉伸试验设计

    Table  1.   Tensile experiment design of carbon fiber/BMI resin composite FJF joints

    Test typeTest numberSpecimen numberSpecimen quantity
    Static strength 1 TS-bonded-t01 3
    2 TS-bonded-t03 3
    3 TS-bonded-t02 3
    4 TS-bolted 3
    5 TS-hybrid-t02 3
    6 TS-hybrid-t01 3
    7 TS-hybrid-t03 3
    Fatigue 8 TF-bonded-t02 9
    9 TF-bolted 9
    10 TF-hybrid-t02 9
    11 TF-hybrid-t01 9
    12 TF-hybrid-t03 9
    Notes: TS—Tensile static; TF—Tensile fatigue; Words in the middle refer to the joint type; Words at the right side refer to the adhesive thickness value, 01—0.1 mm, 02—0.2 mm, 03—0.3 mm.
    下载: 导出CSV

    表  2  碳纤维/BMI树脂复合材料FJF含胶接头搭接区端部胶层开裂平均循环次数

    Table  2.   Average cycles of adhesive cracking at the end of overlap zone for carbon fiber/BMI resin composite FJF joints with adhesive

    Pmax/Pu Average cycle
    TF-bonded-
    t02
    TF-hybrid-
    t01
    TF-hybrid-
    t02
    TF-hybrid-
    t03
    90% 34 22 37 48
    80% 701 404 1 074 2 222
    70% 73 644 31 126 90 409 219 180
    下载: 导出CSV

    表  3  不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头搭接区端部和孔边胶层的应力

    Table  3.   Adhesive stresses at the end of overlap zone and around bolt hole of carbon fiber/BMI resin composite FJF hybrid joints with different adhesive thicknesses

    Adhesive thickness/mmPositionPeel stress/
    MPa
    Shear stress/
    MPa
    0.1 End of overlap zone 6.42 6.43
    Hole edge −18.85 ±0.84
    0.2 End of overlap zone 3.72 4.52
    Hole edge −17.72 ±0.71
    0.3 End of overlap zone 2.60 3.59
    Hole edge −17.46 ±0.67
    下载: 导出CSV
  • [1] ARENAS J M, NARBÓN J J, ALĺA C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution[J]. International Journal of Adhesion and Adhesives,2010,30(3):160-165. doi: 10.1016/j.ijadhadh.2009.12.003
    [2] XU W, WEI Y G. Strength and interface failure mechanism of adhesive joints[J]. International Journal of Adhesion and Adhesives,2012,34:80-92. doi: 10.1016/j.ijadhadh.2011.12.004
    [3] NAITO K, ONTA M, KOGO Y. The effect of adhesive thickness on tensile and shear strength of polyimide adhesive[J]. International Journal of Adhesion and Adhesives,2012,36:77-85. doi: 10.1016/j.ijadhadh.2012.03.007
    [4] XU W, WEI Y G. Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures[J]. International Journal of Adhesion and Adhesives,2013,40:158-167. doi: 10.1016/j.ijadhadh.2012.07.012
    [5] 王玉奇, 何晓聪, 邢保英, 等. 胶厚对单搭粘接接头强度影响的试验与仿真研究[J]. 机械强度, 2014, 36(6):873-877.

    WANG Yuqi, HE Xiaocong, XING Baoying, et al. Research on the influence of bondline thickness on strength of adhesive bonding of single lap joints based on experiment and simulation[J]. Journal of Mechanical Strength,2014,36(6):873-877(in Chinese).
    [6] BOUTAR Y, NAÏMI S, MEZLINI S, et al. Effect of adhesive thickness and surface roughness on the shear strength of aluminium one component polyurethane adhesive single-lap joints for automotive applications[J]. Journal of Adhesion Science and Technology,2016,30(17):1913-1929. doi: 10.1080/01694243.2016.1170588
    [7] AKHAVAN-SAFAR A, AYATOLLAHI M R, DA SILVA L F M. Strength prediction of adhesively bonded single lap joints with different bondline thicknesses: A critical longitudinal strain approach[J]. International Journal of Solids and Structures,2017,109:189-198. doi: 10.1016/j.ijsolstr.2017.01.022
    [8] BOUTAR Y, NAIMI S, MEZLINI S, et al. Fatigue resistance of an aluminium one-component polyurethane adhesive joint for the automotive industry: Effect of surface roughness and adhesive thickness[J]. International Journal of Adhesion and Adhesives,2018,83:143-152. doi: 10.1016/j.ijadhadh.2018.02.012
    [9] TAIB A A, BOUKHILI R, ACHIOU S, et al. Bonded joints with composite adherends Part Ⅰ: Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture[J]. International Journal of Adhesion and Adhesives,2006,26(4):226-236. doi: 10.1016/j.ijadhadh.2005.03.015
    [10] ANYFANTIS K N, TSOUVALIS N G. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents Part Ⅰ: Experiments[J]. Composite Structures,2013,96:850-857. doi: 10.1016/j.compstruct.2012.08.060
    [11] TANG J H, SRIDHAR I, SRIKANTH N. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints[J]. Composites Science and Technology,2013,86:18-25. doi: 10.1016/j.compscitech.2013.06.018
    [12] 刘亚文, 宋建国, 马毓, 等. 胶层厚度对双搭接胶连接接头承载力的影响分析[J]. 玻璃钢/复合材料, 2012(2):20-24. doi: 10.3969/j.issn.1003-0999.2012.02.005

    LIU Yawen, SONG Jianguo, MA Yu, et al. Impact analysis of load capability of double lap adhesive joint by adhesive thickness[J]. Fiber Reinforced Plastics/Composites,2012(2):20-24(in Chinese). doi: 10.3969/j.issn.1003-0999.2012.02.005
    [13] 熊东箭. 玻纤增强复合材料单搭接胶接接头强度研究[D]. 长沙: 湖南大学, 2018.

    XIONG Dongjian. A study on adhesive strength of single lap structural adhesive join of glass fiber reinforced composites[D]. Changsha: Hunan University, 2018(in Chinese).
    [14] 袁辉, 刘鹏飞, 王景全, 等. 胶层厚度对胶连接接头承载力的影响机理与控制[J]. 解放军理工大学学报(自然科学版), 2013, 14(1):53-57.

    YUAN Hui, LIU Pengfei, WANG Jingquan, et al. Mechanism of layer thickness on bearing capacity of adhesive bonding joints and control[J]. Journal of PLA University of Science and Technology (Natural Science Edition),2013,14(1):53-57(in Chinese).
    [15] KISHORE A N, PRASAD N S. An experimental study of flat-joggle-flat bonded joints in composite laminates[J]. International Journal of Adhesion & Adhesives,2012,35:55-58.
    [16] 王毅, 冯宪章, 李磊, 等. 复合材料层合板二次共固化补强胶层失效分析研究[J]. 机械强度, 2012, 34(6):862-867.

    WANG Yi, FENG Xianzhang, LI Lei, et al. Bonding adhesive damage study of the secondary co-cure reinforcement tensile experiment[J]. Journal of Mechanical Strength,2012,34(6):862-867(in Chinese).
    [17] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints Part Ⅰ: Model development and validation[J]. Composite Structures,2005,71(2):140-158. doi: 10.1016/j.compstruct.2004.09.024
    [18] SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain[J]. International Journal of Adhesion and Adhesives,2009,29(4):361-371. doi: 10.1016/j.ijadhadh.2008.07.008
    [19] 许昶, 刘志明. CFRP平-折-平连接接头试验研究与数值模拟[J]. 北京航空航天大学学报, 2019, 45(11):2207-2216.

    XU Chang, LIU Zhiming. Experimental study and numerical simulation on CFRP flat-joggle-flat joints[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(11):2207-2216(in Chinese).
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1364
  • HTML全文浏览量:  604
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 录用日期:  2020-01-12
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回