Effect of adhesive thickness on mechanical properties of carbon fiber/bismaleimide resin composite flat-joggle-flat hybrid (bonded-bolted) joint
-
摘要: 以碳纤维/双马来酰亚胺(BMI)树脂复合材料平-折-平(FJF)连接接头为对象,通过试验对比分析了特定胶层厚度下碳纤维/BMI树脂复合材料FJF连接接头的静强度和疲劳性能,并探究了胶层厚度对碳纤维/BMI树脂复合材料FJF混合接头力学性能的影响。利用背面应变技术对碳纤维/BMI树脂复合材料FJF混合接头搭接区端部胶层开裂进行监测。利用有限元软件ABAQUS对不同胶层厚度下碳纤维/BMI树脂复合材料FJF混合接头搭接区胶层应力分布进行了分析。结果表明,碳纤维/BMI树脂复合材料FJF混合接头的平均拉伸极限载荷、搭接区端部胶层开裂平均循环次数和平均疲劳寿命均随着胶层厚度在0.1~0.3 mm范围内增加而增大。不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头均经历相同的失效阶段,即搭接区胶层端部开裂,胶层沿搭接区断裂扩展,最终靠近加载端孔边拉伸断裂,呈±45°断口。随着胶层厚度在0.1~0.3 mm范围的增加,搭接区端部胶层剥离应力、剪切应力及孔边胶层压缩应力均减小。在胶层厚度为0.1~0.3 mm范围内,剪应力是胶层破坏的控制因素。
-
关键词:
- 碳纤维 /
- 双马来酰亚胺(BMI)树脂 /
- 复合材料 /
- 平-折-平(FJF)混合连接接头 /
- 胶层厚度 /
- 静强度 /
- 疲劳寿命 /
- 胶层应力
Abstract: Experiments were carried out to compare the static strengths and fatigue behaviors of the carbon fiber/bismaleimide (BMI) resin composite flat-joggle-flat (FJF) joints under a certain adhesive thickness. Meanwhile, effects of the adhesive thickness on the mechanical properties of the carbon fiber/BMI resin composite FJF hybrid joints were explored. Backface strain technology was used to detect the adhesive cracking at the end of the overlap zone. Adhesive stress distributions in the overlap zone of the carbon fiber/BMI resin composite FJF hybrid joints were analyzed based on the ABAQUS software. The results show that the average tensile ultimate load, the average adhesive cracking cycles at the end of the overlap zone and the average fatigue life of the carbon fiber/BMI resin composite FJF hybrid joints all rise with the increasing adhesive thickness in a certain range of 0.1 mm to 0.3 mm. The carbon fiber/BMI resin composite FJF hybrid joints with different adhesive thicknesses all go through the same failure stages: Firstly the adhesive cracking happens at the end of the overlap zone, then the adhesive crack extends along the overlap zone, finally a net-tension failure occurs at the hole near the loading end, presenting the fracture appearance of ±45°. As the adhesive thickness increases within the range of 0.1 mm to 0.3 mm, adhesive peel and shear stress at the end of the overlap zone and the compressive stresses around the bolt hole all decrease. Shear stress is the main factor that accounts for the adhesive failure. -
图 1 碳纤维/双马来酰亚胺(BMI)树脂复合材料平-折-平(FJF)混合连接接头示意图
Figure 1. Schematic diagram of carbon fiber/bismaleimide (BMI) resin composite flat-joggle-flat (FJF) hybrid joint
d—Hole diameter; W—Width; E—Edge distance; ta—Laminate thickness; tc—Adhesive thickness; r1—Larger fillet diameter; r2—Smaller fillet diameter; θ—Angle between flat and joggle segment
表 1 碳纤维/BMI树脂复合材料FJF接头拉伸试验设计
Table 1. Tensile experiment design of carbon fiber/BMI resin composite FJF joints
Test type Test number Specimen number Specimen quantity Static strength 1 TS-bonded-t01 3 2 TS-bonded-t03 3 3 TS-bonded-t02 3 4 TS-bolted 3 5 TS-hybrid-t02 3 6 TS-hybrid-t01 3 7 TS-hybrid-t03 3 Fatigue 8 TF-bonded-t02 9 9 TF-bolted 9 10 TF-hybrid-t02 9 11 TF-hybrid-t01 9 12 TF-hybrid-t03 9 Notes: TS—Tensile static; TF—Tensile fatigue; Words in the middle refer to the joint type; Words at the right side refer to the adhesive thickness value, 01—0.1 mm, 02—0.2 mm, 03—0.3 mm. 表 2 碳纤维/BMI树脂复合材料FJF含胶接头搭接区端部胶层开裂平均循环次数
Table 2. Average cycles of adhesive cracking at the end of overlap zone for carbon fiber/BMI resin composite FJF joints with adhesive
Pmax/Pu Average cycle TF-bonded-
t02TF-hybrid-
t01TF-hybrid-
t02TF-hybrid-
t0390% 34 22 37 48 80% 701 404 1 074 2 222 70% 73 644 31 126 90 409 219 180 表 3 不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头搭接区端部和孔边胶层的应力
Table 3. Adhesive stresses at the end of overlap zone and around bolt hole of carbon fiber/BMI resin composite FJF hybrid joints with different adhesive thicknesses
Adhesive thickness/mm Position Peel stress/
MPaShear stress/
MPa0.1 End of overlap zone 6.42 6.43 Hole edge −18.85 ±0.84 0.2 End of overlap zone 3.72 4.52 Hole edge −17.72 ±0.71 0.3 End of overlap zone 2.60 3.59 Hole edge −17.46 ±0.67 -
[1] ARENAS J M, NARBÓN J J, ALĺA C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution[J]. International Journal of Adhesion and Adhesives,2010,30(3):160-165. doi: 10.1016/j.ijadhadh.2009.12.003 [2] XU W, WEI Y G. Strength and interface failure mechanism of adhesive joints[J]. International Journal of Adhesion and Adhesives,2012,34:80-92. doi: 10.1016/j.ijadhadh.2011.12.004 [3] NAITO K, ONTA M, KOGO Y. The effect of adhesive thickness on tensile and shear strength of polyimide adhesive[J]. International Journal of Adhesion and Adhesives,2012,36:77-85. doi: 10.1016/j.ijadhadh.2012.03.007 [4] XU W, WEI Y G. Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures[J]. International Journal of Adhesion and Adhesives,2013,40:158-167. doi: 10.1016/j.ijadhadh.2012.07.012 [5] 王玉奇, 何晓聪, 邢保英, 等. 胶厚对单搭粘接接头强度影响的试验与仿真研究[J]. 机械强度, 2014, 36(6):873-877.WANG Yuqi, HE Xiaocong, XING Baoying, et al. Research on the influence of bondline thickness on strength of adhesive bonding of single lap joints based on experiment and simulation[J]. Journal of Mechanical Strength,2014,36(6):873-877(in Chinese). [6] BOUTAR Y, NAÏMI S, MEZLINI S, et al. Effect of adhesive thickness and surface roughness on the shear strength of aluminium one component polyurethane adhesive single-lap joints for automotive applications[J]. Journal of Adhesion Science and Technology,2016,30(17):1913-1929. doi: 10.1080/01694243.2016.1170588 [7] AKHAVAN-SAFAR A, AYATOLLAHI M R, DA SILVA L F M. Strength prediction of adhesively bonded single lap joints with different bondline thicknesses: A critical longitudinal strain approach[J]. International Journal of Solids and Structures,2017,109:189-198. doi: 10.1016/j.ijsolstr.2017.01.022 [8] BOUTAR Y, NAIMI S, MEZLINI S, et al. Fatigue resistance of an aluminium one-component polyurethane adhesive joint for the automotive industry: Effect of surface roughness and adhesive thickness[J]. International Journal of Adhesion and Adhesives,2018,83:143-152. doi: 10.1016/j.ijadhadh.2018.02.012 [9] TAIB A A, BOUKHILI R, ACHIOU S, et al. Bonded joints with composite adherends Part Ⅰ: Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture[J]. International Journal of Adhesion and Adhesives,2006,26(4):226-236. doi: 10.1016/j.ijadhadh.2005.03.015 [10] ANYFANTIS K N, TSOUVALIS N G. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents Part Ⅰ: Experiments[J]. Composite Structures,2013,96:850-857. doi: 10.1016/j.compstruct.2012.08.060 [11] TANG J H, SRIDHAR I, SRIKANTH N. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints[J]. Composites Science and Technology,2013,86:18-25. doi: 10.1016/j.compscitech.2013.06.018 [12] 刘亚文, 宋建国, 马毓, 等. 胶层厚度对双搭接胶连接接头承载力的影响分析[J]. 玻璃钢/复合材料, 2012(2):20-24. doi: 10.3969/j.issn.1003-0999.2012.02.005LIU Yawen, SONG Jianguo, MA Yu, et al. Impact analysis of load capability of double lap adhesive joint by adhesive thickness[J]. Fiber Reinforced Plastics/Composites,2012(2):20-24(in Chinese). doi: 10.3969/j.issn.1003-0999.2012.02.005 [13] 熊东箭. 玻纤增强复合材料单搭接胶接接头强度研究[D]. 长沙: 湖南大学, 2018.XIONG Dongjian. A study on adhesive strength of single lap structural adhesive join of glass fiber reinforced composites[D]. Changsha: Hunan University, 2018(in Chinese). [14] 袁辉, 刘鹏飞, 王景全, 等. 胶层厚度对胶连接接头承载力的影响机理与控制[J]. 解放军理工大学学报(自然科学版), 2013, 14(1):53-57.YUAN Hui, LIU Pengfei, WANG Jingquan, et al. Mechanism of layer thickness on bearing capacity of adhesive bonding joints and control[J]. Journal of PLA University of Science and Technology (Natural Science Edition),2013,14(1):53-57(in Chinese). [15] KISHORE A N, PRASAD N S. An experimental study of flat-joggle-flat bonded joints in composite laminates[J]. International Journal of Adhesion & Adhesives,2012,35:55-58. [16] 王毅, 冯宪章, 李磊, 等. 复合材料层合板二次共固化补强胶层失效分析研究[J]. 机械强度, 2012, 34(6):862-867.WANG Yi, FENG Xianzhang, LI Lei, et al. Bonding adhesive damage study of the secondary co-cure reinforcement tensile experiment[J]. Journal of Mechanical Strength,2012,34(6):862-867(in Chinese). [17] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints Part Ⅰ: Model development and validation[J]. Composite Structures,2005,71(2):140-158. doi: 10.1016/j.compstruct.2004.09.024 [18] SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain[J]. International Journal of Adhesion and Adhesives,2009,29(4):361-371. doi: 10.1016/j.ijadhadh.2008.07.008 [19] 许昶, 刘志明. CFRP平-折-平连接接头试验研究与数值模拟[J]. 北京航空航天大学学报, 2019, 45(11):2207-2216.XU Chang, LIU Zhiming. Experimental study and numerical simulation on CFRP flat-joggle-flat joints[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(11):2207-2216(in Chinese).