Processing math: 100%

基于金属氧化物纳米晶的电致变色材料研究进展

贾岩, 刘东青, 程海峰, 李铭洋, 祖梅, 王子

贾岩, 刘东青, 程海峰, 等. 基于金属氧化物纳米晶的电致变色材料研究进展[J]. 复合材料学报, 2023, 40(9): 4863-4879. DOI: 10.13801/j.cnki.fhclxb.20230509.002
引用本文: 贾岩, 刘东青, 程海峰, 等. 基于金属氧化物纳米晶的电致变色材料研究进展[J]. 复合材料学报, 2023, 40(9): 4863-4879. DOI: 10.13801/j.cnki.fhclxb.20230509.002
JIA Yan, LIU Dongqing, CHENG Haifeng, et al. A review of electrochromic materials based on metal oxide nanocrystals[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4863-4879. DOI: 10.13801/j.cnki.fhclxb.20230509.002
Citation: JIA Yan, LIU Dongqing, CHENG Haifeng, et al. A review of electrochromic materials based on metal oxide nanocrystals[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4863-4879. DOI: 10.13801/j.cnki.fhclxb.20230509.002

基于金属氧化物纳米晶的电致变色材料研究进展

基金项目: 国家自然科学基金面上项目(52073303);湖南省自然科学基金杰出青年基金项目(2021JJ10049);湖南省研究生科研创新项目(CX20210054)
详细信息
    通讯作者:

    刘东青,博士,教授,博士生导师,研究方向为自适应红外伪装、红外隐身和智能热控材料 E-mail: liudongqing07@nudt.edu.cn

    程海峰,博士,研究员,博士生导师,研究方向为动态自适应红外伪装及光电功能材料与器件 E-mail: hfcheng@rocketmail.com

  • 中图分类号: TQ174;TB331

A review of electrochromic materials based on metal oxide nanocrystals

Funds: National Natural Science Foundation of China (52073303); Natural Science Foundation of Hunan Province (2021JJ10049); Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210054)
  • 摘要: 电致变色材料是一类光学特性随电压可逆调控的材料,在智能窗、显示器、汽车变色天幕、智能热管理、军事伪装等领域应用广泛。近年来基于金属氧化物纳米晶的电致变色材料,由于其优异的性能和成本优势,引起了研究者的广泛关注。本文首先介绍了电化学调控纳米晶局域表面等离子体共振(LSPR)的基本原理。然后,结合国内外研究现状,综述了金属氧化物纳米晶及其复合材料在传统电致变色和基于电化学调控纳米晶LSPR的新型电致变色领域中的最新研究进展。最后提出了基于金属氧化物纳米晶电致变色材料存在的问题和解决的途径,并对其发展前景进行了展望。

     

    Abstract: Electrochromic materials are a kind of materials whose optical characteristics can be regulated with voltage reversibly. It is widely used in smart windows, displays, electrochromic sunroof, smart thermal management, military camouflage, and other fields. In recent years, electrochromic materials based on metal oxide nanocrystals have attracted extensive attention of researchers due to their excellent performance and cost advantages. In this paper, we first introduce the principle of electrochemically controlled localized surface plasmon resonance (LSPR) of nanocrystals. Then, we review the latest research progress of metal oxide nanocrystals and their compo-sites in traditional electrochromic and novel electrochromic fields based on electrochemically regulated LSPR. Finally, we put forward the existing problems and solutions of electrochromic materials based on metal oxide nanocrystals and their development prospects are prospected.

     

  • 电致变色是一种颜色、透明度或其他光学特性变化受外加电场调控的现象[1-2]。电致变色材料的可调光谱范围广,从可见光到红外波段均有报道,在智能窗[3-4]、显示器[5-6]、汽车变色天幕[7]、智能热管理[8-9]、军事伪装[10-11]等领域展现出了巨大的应用前景。自20世纪60年代至70年代,Platt[12]和Deb[13]分别演示了基于有机染料和氧化钨(WO3)的电致变色现象以来,研究人员对电致变色材料开展了广泛研究,丰富了电致变色材料的范围。在众多电致变色材料中,基于金属氧化物的无机变色材料,诸如WO3[14-15]、TiO2[16]、NiO[17]、MoO3[18]等,由于其结构性能稳定,调制范围大、光学记忆性好等特点,受到广泛关注。这些金属氧化物通常以薄膜的形态作为电致变色器件的活性层。然而这些金属氧化物薄膜通常采用昂贵的气相沉积设备制备,如磁控溅射[19]或蒸镀[20]设备。此外这些薄膜的变色性能通常伴随着离子的反复嵌入脱出而衰减。

    金属氧化物纳米化可以用于改善电致变色材料的响应速度、循环寿命等性能,同时降低电致变色器件的制备成本[21]。此外基于局域表面等离子体共振(LSPR)效应的新型电致变色纳米材料,如氧化铟锡(ITO)纳米晶[22]、掺铝氧化锌(AZO)纳米晶[23]等,正日益成为新的研究热点。传统的金属氧化物电致变色材料以纳米晶形态存在时,表现出增强的性能,例如更快的响应速度,更好的循环性能等。新兴的基于LSPR效应的电致变色材料,如ITO纳米晶、AZO纳米晶及其纳米复合材料,表现出了更优的性能及光谱选择性。本文首先介绍了基于LSPR效应电致变色的基本原理,然后综述了金属氧化物纳米晶电致变色材料及器件的性能和应用,并展望了金属氧化物纳米晶电致变色材料的发展方向。

    当电磁辐射诱导离域载流子(导带电子或价带空穴)在材料内集体共振时,就会发生等离子体响应[24]。在纳米结构中,当光的频率与纳米粒子自由载流子的整体振动频率相匹配时,纳米粒子对光子能量有较强的吸收作用,导致在纳米晶中产生LSPR效应(图1),在光谱中会出现相应的LSPR吸收峰[25-26]。纳米晶的LSPR可以通过改变纳米晶的大小或形状、掺杂等方式实现静态调控[27],或者通过化学、光化学或电化学等操作实现动态调控。

    图  1  金属氧化物纳米晶中局域表面等离子体的示意图[21]
    Figure  1.  Schematic diagram of local surface plasma in metal oxide nanocrystals[21]

    纳米晶的LSPR频率(ωLSPR)与纳米晶的自由载流子浓度(n)的关系[28]

    ωLSPR=ω2p1+2εmγ2 (1)
    ωp=ne2ε0me (2)

    其中:ωp是块体材料的等离子体频率;e是电子电量,为1.60×10−19 C;me是电子的有效质量;εm为周围环境的介电常数;γ为阻尼常数。

    由式(1)~(2)可知,纳米晶的LSPR吸收峰位置与自由载流子浓度有关。掺杂是一种有效的调控金属氧化物纳米晶中自由载流子浓度的方式。如图2(a)~2(c)所示,掺杂主要可分为3种模式:替代掺杂、空位掺杂和间隙掺杂。替代掺杂是调控金属氧化物纳米晶LSPR吸收峰位置最普遍的方式,如Sn∶In2O3[29]、Sb∶In2O3[30]、Al∶ZnO[31]、W∶TiO2[32]、Ta∶TiO2[33]等。通过对掺杂剂浓度的微调,可以显著地调节金属氧化物纳米晶的自由载流子浓度,从而改变LSPR吸收峰的位置。空位掺杂通常出现在一些非化学计量比的金属氧化物纳米晶中,如MO3-x[34]和TiO2-x[35]等。由于氧空位导致金属氧化物纳米晶中自由载流子增多,从而产生了LSPR吸收。然而,氧空位导致的LSPR吸收可能会在空气中迅速消退[36]。一些半径较小的离子,如Li+、Na+等,通常会嵌入到金属氧化物纳米晶中,发生间隙掺杂[37-38]。这些离子会导致导带中离域自由电子的积累,从而产生强烈的LSPR吸收。除了掺杂外,金属氧化物纳米晶的尺寸和形状、环境的介电常数等也会影响LSPR吸收峰的位置[39-41]

    图  2  金属氧化物掺杂策略模式的示意图:(a) 未掺杂;(b) 替代掺杂;(c) 空位掺杂;(d) 间隙掺杂[42]
    A—Oxygen ion; B—Main cation; C—Dopant ion
    Figure  2.  Schematic diagram of doping strategy modes of metal oxide: (a) Origin; (b) Substitution doping; (c) Vacancy doping; (d) Interstitial doping[42]

    德鲁德-洛伦兹模型可以用来预测和模拟金属氧化物纳米晶的LSPR效应[25]。德鲁德-洛伦兹介电常数εp可以通过下式表示[25]

    εp(ω)=ε1(ω)+iε2(ω) (3)

    介电常数的实部ε1决定了材料的极化率,如式(4)所示;虚部ε2表示由自由载流子引起的损耗,如式(5)所示:

    ε1=εω2pω2+γ2 (4)
    ε2=ω2pγω(ω2+γ2) (5)

    通常研究的金属氧化物体系(如In2O3、ZnO和CdO)的光学性质取决于掺杂剂类型、载流子浓度和阻尼常数等。这些材料特性会导致材料的介电常数、折射率、吸收系数和LSPR频率等光学特性的显著变化(图3)。利用德鲁德-洛伦兹介电函数,可以通过Mie理论对球形纳米晶的LSPR光谱进行建模。当纳米晶的直径小于直径阈值(d=γLSPR/20,γLSPR为纳米晶的阻尼常数)时,纳米晶主要表现出光的吸收。当纳米晶的直径大于直径阈值时,纳米晶更多地表现出光的散射。对于球形纳米颗粒,LSPR的散射系数(Csca)和吸收系数(Cabs)可以通过下式计算[24]

    图  3  (a) 不同金属氧化物体系复介电函数的实部ε1和虚部ε2[43-47];(b) 由(a)中复介电函数推导出的相应折射率和吸收系数;(c) In∶CdO和Sn∶In2O3ωLSPR和LSPR吸收峰的半峰宽(FWHMLSPR)[25]
    Figure  3.  (a) Real ε1 and imaginary ε2 parts of complex dielectric functions for different metal oxide systems[43-47]; (b) Corresponding complex refractive index and absorption coefficient derived from the complex dielectric functions shown in panel (a); (c) ωLSPR and full width at half-maximum (FWHMLSPR) versus doping for both In∶CdO and Sn∶In2O3[25]
    ωLSPR—Frequency of LSPR; LSPR—Localized surface plasmon resonance
    Csca(ω)=4πR2[k(εH)1/2R]4|εp(ω)εHεp(ω)+2εH|2 (6)
    Cabs(ω)=4πR2[k(εH)1/2R]Im{εp(ω)εHεp(ω)+2εH} (7)

    其中:k为波矢;R为半径;εH为环境介电常数;Im为虚部。根据Mie理论(式(6)~(7)),当纳米晶介电常数和环境介电常数满足εp=−2εH的关系时,球形纳米晶将表现出最大的LSPR吸收和散射[24]

    通过电化学改变金属氧化物纳米晶的电子浓度,可以对LSPR的频率和强度进行调制,实现等离子体电致变色。纳米晶电致变色的原理示意图及光谱变化,如图4所示。在OFF状态下,在纳米晶上施加正电位,吸附在纳米晶表面的锂离子由于静电斥力而脱离。纳米晶表面耗散层的电子被消耗,自由载流子浓度降低。纳米晶的LSPR吸收峰红移,吸收强度降低,纳米晶薄膜的透过率增加。相反,在ON状态下,在纳米晶上施加负电位,锂离子吸附到纳米晶表面。由于电子的注入,在纳米晶表面形成了电荷积累层。纳米晶的LSPR吸收峰蓝移,吸收强度增加,纳米晶薄膜的透射率降低。不同于传统的由氧化还原反应或离子嵌入/脱出引发的电致变色材料,金属氧化物纳米晶展现了一种电容型的变色机制,从而表现出更快的响应时间和更高的着色效率(图5)。

    图  4  纳米晶电致变色膜的微观变化示意图及光谱变化[21-22]
    Figure  4.  Schematic diagram of microscopic changes and spectral changes of nanocrystal electrochromic film[21-22]
    图  5  不同结构金属氧化物电致变色材料的着色效率、耐用度、光谱选择性和开关响应速度[21]
    Figure  5.  Coloring efficiency, durability, spectral selectivity, and response time of metal oxide electrochromic materials with different structures[21]
    VIS—Visible light; NIR—Near-infrared light; ITO—Indium tin oxid; AZO—Aluminum-doped zinc oxide

    目前,用于电致变色的金属氧化物纳米晶主要包括纳米化的传统金属氧化物,如WO3纳米晶、TiO2纳米晶、NbO纳米晶等,及基于LSPR效应的掺杂金属氧化物纳米晶,如掺杂WO3纳米晶、ITO纳米晶、AZO纳米晶等。随着电致变色领域的迅速发展,金属氧化物纳米晶受到越来越多地关注,因此,本节重点介绍基于上述金属氧化物纳米晶的电致变色材料及器件的最新进展。

    传统的电致变色金属氧化物,包括WO3[48-49]、NiO[50]、TiO2[51]、MoO3[52-53]等,通常采用气相沉积或湿化学方法制备。相比于昂贵复杂的气相沉积方法,制备金属氧化物纳米晶所采用的湿化学法制备成本低,制备工艺简单,有利于电致变色器件的大面积制备。此外,与传统电致变色器件相比,基于金属氧化物纳米晶的电致变色器件,其电致变色层具有更大的比表面积(有利于离子嵌入/脱出)、更高的电荷密度、更优的电化学循环稳定性和相当的着色效率。因此基于金属氧化物纳米晶的电致变色材料受到了广泛的关注。

    WO3的电致变色研究大多集中在其非晶态薄膜上,由于其开关响应速度快。然而非晶态WO3的结构和化学稳定性较差,导致非晶态WO3薄膜的电致变色稳定性较差。相比于非晶态WO3,晶态WO3结构更加稳定。然而,晶态WO3颗粒通常具有较慢的开关响应速度[48]。具有大比表面积的WO3纳米晶可以通过增加电化学过程中的活性表面来改善晶体WO3的开关特性[48]。Wang等[54]采用湿化学方法合成了尺寸和形状均匀的结晶WO3纳米棒,并采用定向聚集-沉积的方法实现了WO3纳米棒的大面积组装(图6(a))。所制备的电致变色薄膜表现出高的循环稳定性(>3000次)、高透过率调制量(~66%,图6(b))及快速的开关响应速度(~8 s,图6(b))。其电致变色过程,如图6(c)所示。Evans等[55]通过合成具有不同晶面取向的h-WO3纳米棒,研究了晶面取向对WO3的着色效率和循环稳定性能的影响。具有{ˉ120}晶面的h-WO3纳米棒比只有{001}和{100}晶面的纳米棒表现出更好的循环稳定性。{100}晶面为主的WO3纳米棒薄膜表现出更高的着色效率(图6(d)),但在500次循环后性能衰减。因此,可以通过改变纳米晶的表面晶面的方式优化电致变色器件的性能。

    图  6  (a) WO3纳米棒的SEM和TEM图像[54];(b) 不同电压下WO3纳米棒薄膜的UV-VIS光谱和在±3 V循环下WO3纳米棒薄膜在着色和漂白状态之间的开关响应速度[54];(c) 在不同电压下WO3纳米棒的颜色变化[54];(d) {100}晶面和{ˉ120}晶面为主的WO3纳米棒的着色效率[55]
    Figure  6.  (a) SEM and TEM images of the WO3 nanorod film[54]; (b) UV-VIS spectra of WO3 nanorod films at different voltages and on/off response time of WO3 nanorod films between coloring and bleaching states at ± 3 V[54]; (c) Color changes of the WO3 nanorod film at different voltages[54]; (d) Coloration efficiency of WO3 nanorods with {100} crystal facets and {ˉ120} crystal facets dominant[55]

    TiO2是一种典型的插层型金属氧化物[56-57],其通过金属离子的嵌入来着色,通过反向偏压脱出金属离子来恢复到原来的颜色(图7(a))。着色/褪色速率在很大程度上取决于离子嵌入/脱出的速率。然而致密的TiO2薄膜的离子扩散缓慢[58],因而限制了其应用。将TiO2纳米化有利于增加离子嵌入/脱出的反应界面,减少离子扩散路径,提高电致变色器件的开关响应速度。Liang等[32]采用“一锅法”合成了直径(8.6±2) nm的TiO2纳米晶(图7(b))。利用TiO2纳米晶制备的电致变色器件,表现出快速的开关响应速度(着色和褪色分别为9 s和2.7 s)、66%的透过率调制幅度(550 nm)、可稳定循环1000次以上(图7(c)~7(d))。

    图  7  (a) Zn2+嵌入/脱出TiO2晶格的示意图和着色和褪色状态的光学照片[32];(b) TiO2纳米晶的TEM图像和尺寸分布[32];(c) 基于TiO2纳米晶的电致变色器件在550 nm波段、1.3~0 V循环下的实时透射光谱[32];(d) 在完全着色和褪色状态下,1000次循环前后,基于TiO2纳米晶的电致变色器件光学透过谱[32];(e) Nb12O29纳米片的STEM图像[59];(f) Nb12O29纳米片薄膜的在不同电压下的光谱图和光学照片[59]
    Figure  7.  (a) Schematic diagram of Zn2+ (de-)insertion of TiO2 lattice and photographs at fully bleached and colored state[32]; (b) TEM images and size distributions (inserts) of TiO2 nanocrystals[32]; (c) Real-time transmittance spectra of electrochromic devices based on TiO2 nanocrystals at 550 nm at 1.3-0 V[32]; (d) Optical transmittance spectra before and after 1000 cycles at fully bleached and colored states[32]; (e) STEM imaging of Nb12O29 nanoplatelets[59]; (f) Spectrum and photographs of Nb12O29 nanoplatelet film at different voltages[59]
    GXU—Guangxi Univiersity; OCP—Open circuit potential; NIR—Night-time ozone profile; τc—Coloring time; τb—Fading time

    块体Nb2O5在Li+离子嵌入前后表现出良好的结构稳定性,然而其电致变色性能还尚未见报道[59]。Lu等[59]合成了二维形态的单斜Nb12O29纳米片(图7(e))。利用Nb12O29纳米片制备的Nb12O29纳米晶薄膜在可见光和近红外光谱范围均表现出超过70%的调制量(图7(f))。其中近红外吸收是由电容充电引起,而可见光吸收是由离子插层引起。表1总结了传统金属氧化物纳米晶电致变色薄膜及器件的性能。上述金属氧化物纳米材料可以最大限度地提高传统电致变色薄膜及器件的性能,对制造耐用、高效和廉价的电致变色器件具有重要意义[21]

    表  1  基于传统金属氧化物纳米晶的电致变色薄膜及器件的性能
    Table  1.  Performance of electrochromic films and devices based on traditional metal oxide nanocrystals
    MaterialsElectrolyteOn/Off response
    time/s
    Coloration efficiency /
    (cm2·C−1)
    Maximum optical
    modulation
    Stability/CyclesRef.
    WO3 nanorods and nanospheroids1 mol/L H2SO442 (670 nm)3000[60]
    WO3 nanorods1 mol/L LiClO48 (632.8 nm)~66% (632.8 nm)3000[54]
    WO3 nanorods0.5 mol/L H2SO4<25 (632.8 nm)37.6 (632.8 nm)54.9% (800 nm)[61]
    WO3 nanorods1 mol/L LiClO4<20 (940 nm)80 (940 nm) 500[55]
    TiO2 Nanocrystals1 mol/L ZnSO4<9 (550 nm)37.3 (550 nm)66% (550 nm)1000[32]
    WO3/TiO2 nanowiresLiClO4<8 (630 nm)85.7 (630 nm)49% (630 nm) 100[62]
    NbO nanorods1 mol/L LiTFSI75 (1500 nm)~10% (800 nm) 500[63]
    Nb12O29 nanoplateletsLi-based77.3 (550 nm)75% (600 nm) 500[59]
    Note: LiTFSI—Lithium bistrifluoromethane sulfonimide.
    下载: 导出CSV 
    | 显示表格

    虽然纳米结构为传统金属氧化物在电致变色性能方面提供了一些有前景的改进,但这些传统金属氧化物纳米晶不能创造新的功能。近十余年来,新型的基于电化学调控纳米晶LSPR效应的电致变色器件被广泛报道。由于纳米晶的LSPR效应是基于其自身自由载流子与电磁波共振产生,因此通常选用高载流子浓度的掺杂金属氧化物纳米晶,如掺杂WO3、ITO、AZO等,作为电致变色材料[64]。掺杂金属氧化物纳米晶的LSPR吸收峰可以通过改变掺杂剂的种类、掺杂量,纳米晶的形貌、尺寸等方式静态调控,并通过电化学注入或脱出电子动态地改变LSPR吸收的强度和光谱位置。其丰富的调控方式可以实现从可见光至近红外宽谱段领域的自由调控。此外由于电化学调控掺杂金属氧化物纳米晶的LSPR通常以电容方式注入和脱出电子,因此基于此制备的电致变色器件通常具有快速开关响应速度和高的循环稳定性。本节以几种典型的掺杂金属氧化物纳米晶为例,综述基于LSPR效应的电致变色材料及器件的性能。

    未掺杂WO3纳米晶的载流子浓度较低,其LSPR吸收较弱。为实现对WO3纳米晶LSPR吸收的电化学调控,需要提高WO3的载流子浓度。对于过渡金属氧化物而言,提高载流子浓度的方法通常为氧空位掺杂、n型替代掺杂和n型间隙掺杂。由于WO3纳米晶中W的高价态(+6价),n型替代掺杂几乎不可能。关于WO3的n型间隙掺杂(MxWO3,M=K[65-66]、Li[67]、Cs[68-69]、Na[70]等)证明WO3的晶型和结构是影响其近红外LSPR吸收的关键。然而关于WO3的n型间隙掺杂的电致变色性能很少被报道。相比之下,WO3-x纳米晶的氧空位会产生一个浅施主能级,在导带中引入两个电子[42]。通过对氧缺陷浓度的控制可以实现对WO3-x纳米晶LSPR吸收峰位的调控[71],并通过电化学注入和脱出电子实现WO3-x纳米晶的电致变色。

    WO3-x纳米晶通常可以实现可见光和近红外双波段的电致变色调控。在不同的光谱区域中存在两种常见的光吸收机制,在可见光波段为极化子机制,在近红外波段为等离子体机制。极化子机制导致WO3-x纳米晶的可见光透过率发生可逆变化。这是一个涉及金属离子氧化还原反应的法拉第过程,该过程的开关动力学和循环耐久性取决于离子插层动力学和离子在WO3-x纳米晶中的扩散速率。等离子体机制是导致WO3-x纳米晶红外波段发生可逆调制的原因。氧空位产生的自由载流子在谐振频率上发生集体共振,形成LSPR吸收峰,其峰位位于780~1500 nm的近红外波段。通过改变施加电位,WO3-x纳米晶的LSPR频率及强度会发生可逆调制。WO3-x纳米晶在红外波段的等离子体调制是通过表面双电层的电容充放电实现的,不涉及离子嵌入脱出过程,因而等离子体调制的开关响应时间快、循环稳定性好[64, 72]表2总结了基于掺杂WO3纳米晶电致变色薄膜及器件的可见光和近红外双波段调控性能。

    表  2  基于掺杂WO3纳米晶的电致变色薄膜及器件的性能
    Table  2.  Performance of electrochromic films and devices based on doped WO3 nanocrystals
    MaterialsElectrolyteOn/Off response
    time/s
    Coloration efficiency/
    (cm2·C−1)
    Maximum optical
    modulation
    Stability/CyclesRef.
    WO3-x nanowires0.5 mol/L Li-TFSI<891.7% (633 nm); 87.3% (1600 nm)1000[73]
    WO3-x nanoparticles1 mol/L LiClO4<1.550-60 (550 nm);
    317 (1200 nm)
    71.1% (550 nm); 84.6% (1200 nm)1000[72]
    W18O49 nanorods1 mol/L H2SO434.3% (750 nm)[74]
    WO3-x nanocrystal0.1 mol/L Li-TFSI71% (VIS);
    84% (NIR)
    2000[75]
    WO2.72-NbOx1 mol/L Li-TFSI78% (550 nm);
    63% (1200 nm)
    2000[76]
    WO2.72 nanocrystal0.5 mol/L NaClO4; 0.5 mol/L LiClO481 (Na+); 49 (Li+)[70]
    WO3-x nanowires1 mol/L Al(ClO4)3<8121 (633 nm);
    254 (1200 nm)
    93.2% (633 nm); 86.8% (1600 nm)2000[77]
    Cs:WO30.1 mol/L XPF6, where X is Li+, Na+, K+, or TBA+74.3 (TBA+); 70.1 (K+);
    72.7 (Na+); 103 (Li+)
    47% (800 nm);
    70% (1600 nm)
    [78]
    下载: 导出CSV 
    | 显示表格

    Zhang等[73]通过“一锅法”合成了WO3-x纳米晶,其表现出可见光和近红外的双波段调控能力(图8(a)图8(b))。其在4 V~2.6 V电压下近红外透过率的选择性调控是由于电化学对WO3-x纳米晶LSPR吸收峰的调控造成的(图8(c))。等离子体金属氧化物纳米晶的形状和尺寸也会影响其LSPR的调制。在薄膜中,由于表面损耗和纳米晶内部LSPR耦合效应,尺寸对光学性质有额外的影响,从而改变充电过程中光学调制的幅度和能量。在形状各向异性的等离子体纳米晶中,不同的LSPR效应会导致不同的着色效率。Heo等[79]研究了六方Cs∶WO3纳米棒和纳米片中的晶体各向异性对电致变色调制的着色效率和电荷容量的影响。结果表明,在电化学调制纳米晶LSPR过程中,纳米棒薄膜的着色效率高于纳米片,而纳米片的电荷容量明显大于纳米棒(图8(d))。

    图  8  (a) WO3-x纳米晶的TEM图像,插图为WO3-x纳米晶分散液的光学照片[73];(b) 不同电压下WO3-x纳米晶制备的电致变色器件的透过率变化光谱[73];(c) 不同电压下WO3-x晶体结构变化及相应的光学照片变化[73];(d) Cs:WO3纳米晶的晶体结构和形状各向异性对电致变色调制的着色效率和电荷容量的影响[79];(e) WO3-x纳米晶介孔膜的SEM图像[75];(f) WO3-x纳米晶介孔膜的在不同充电状态下LSPR吸收率的变化和致密WO3-x纳米晶薄膜在1.5 V饱和状态下的吸收率[75];(g) WO2.72纳米棒介孔膜的SEM图像[76];(h) WO2.72-NbO电致变色纳米复合膜的在不同电压下的透过率变化曲线和光学照片变化[76];(i) Na+和Li+电解质嵌入WO2.72纳米晶空隙位置的示意图[70]
    Figure  8.  (a) TEM diagram of WO3-x nanocrystals. The inset is optical photo of WO3-x nanocrystal dispersion[73]; (b) Transmission change spectra of electrochromic devices prepared by WO3-x nanocrystals at different voltages[73]; (c) WO3-x crystal structure changes and corresponding optical photo changes under different voltages[73]; (d) Effect of crystal structure and shape anisotropy of Cs: WO3 nanocrystals on the coloring efficiency and charge capacity of electrochromic modulation[79]; (e) SEM diagram of WO3-x nanocrystal mesoporous film[75]; (f) Change of LSPR absorbance of WO3-x nanocrystal mesoporous film under different charging states, and absorbance of compact WO3-x nanocrystal film under 1.5 V saturation[75]; (g) SEM diagram of WO2.72 nanorod mesoporous membrane[76]; (h) Transmittance change and optical photo change of WO2.72-NbO electrochromic nanocomposite film under different voltages[76];(i) Schematic Diagram of the Position of Na+ and Li+ Electrolytes Embedded in the Voids of WO2.72 Nanocrystals[70]

    由于电化学调控纳米晶LSPR吸收是电容机制的,因此在电化学装置中,纳米晶薄膜内孔隙的存在有利于增加活性表面积,同时改善扩散动力学。Kim等[75]利用嵌段共聚物将WO3-x纳米晶在溶液中组装,通过旋涂和热处理工艺,形成WO3-x纳米晶介孔膜(图8(e))。WO3-x纳米晶介孔膜的比电荷容量是致密WO3-x纳米晶薄膜的2倍以上(分别为16.2和7.5 mC/cm2),有利于LSPR的调制[75]。相比于致密的WO3-x纳米晶薄膜,WO3-x纳米晶介孔膜表现出更快的电致变色响应速度(图8(f))。Heo等[76]通过配体剥离方式实现了低温、无模板条件下制备WO2.72纳米棒介孔膜(图8(g))。WO2.72纳米棒的各向异性和配体剥离后的静电斥力是制备WO2.72纳米棒介孔膜的关键。制备WO2.72纳米棒介孔膜,其孔隙率大于58%,通过调整纳米棒的纵横比,可以控制介孔膜的孔隙率。这种工艺可以在柔性基底上制备WO2.72-NbO电致变色纳米复合膜,其可以实现可见光和近红外双波段调制(图8(h)),有利于柔性电致变色器件的大规模、低成本的制造。电解质中阳离子的选择也是影响WO3-x纳米晶等离子体电致变色行为的重要因素。Heo等[70]发现有效利用WO2.72纳米晶的亚化学计量中的不同空隙位置可以增强WO2.72电致变色纳米晶薄膜的着色效率(图8(i))。他们选择性地将Na+离子插到光学活性的六方位来提高WO2.72纳米晶薄膜的着色效率。

    掺杂In2O3和掺杂ZnO是一类禁带宽度大于3 eV的半导体材料,因而其通常表现出高的可见光透过率[80]。通过在In2O3和ZnO材料中分别掺杂Sn、Ce和Al、Ga等掺杂剂可以获得载流子浓度在1018~1021 cm−3之间的n型半导体,最典型的掺杂In2O3和掺杂ZnO分别为ITO和AZO。目前在工业上制备ITO和AZO薄膜最广泛的工艺是通过磁控溅射或真空蒸镀等气相沉积的方式。然而这些工艺制备的通常为致密的ITO和AZO薄膜,这些致密薄膜的电致变色性能鲜有报道。2011年,Garcia等[22]首次报道了溶液法制备的ITO纳米晶基于电化学调控LSPR效应的电致变色性能,为电致变色领域提供了新的研究方向和思路。本节将综述掺杂In2O3和掺杂ZnO纳米晶的掺杂量、尺寸、电解质及纳米晶薄膜结构等对于电化学调控纳米晶LSPR效应的影响,并分析相应电致变色器件的性能。

    Garcia等[23]研究了AZO纳米晶薄膜的电致变色,并与ITO纳米晶薄膜进行了比较。AZO纳米晶薄膜在1100 nm时的着色效率约为50 cm2/C,在2000 nm时高达400 cm2/C。而ITO薄膜的着色效率在1200 nm时约为50 cm2/C,在1700~1800 nm时最大约为375 cm2/C。AZO纳米晶和ITO纳米晶的着色效率远远高于传统的过渡金属氧化物电致变色材料,其着色效率通常在20~100 cm2/C。该研究还验证了等离子体纳米晶电致变色薄膜具有优良的开关响应速度和耐用性。AZO纳米晶电致变色薄膜的开关响应速度在0.06~0.9 s之间,而ITO纳米晶电致变色薄膜的开关响应速度在0.05~3.4 s之间。对ITO和AZO纳米晶薄膜进行了2万次电化学循环,AZO薄膜仅损失了11%的电荷容量,光学性能几乎没有变化(图9(a)图9(b))。而ITO薄膜的光学性能有所衰减,且电荷容量下降了45%,这种容量损失是由于Sn4+不可逆还原为Sn2+导致的 (图9(c)图9(d))。Jia等[81]组合成了AZO纳米晶,其LSPR吸收峰位于7.58 μm的中红外波段。制备了基于LSPR效应的红外电致变色器件,其可见光透过率为84.7%,在7.5~13 μm的红外发射率调制量为0.42,响应速度<600 ms。器件在中红外波段的电致变色拓展了LSPR调控的波段范围,为基于LSPR效应的电致变色器件在红外伪装、红外显示、智能热管理领域的应用提供了新的思路。掺杂In2O3和掺杂ZnO纳米晶电致变色材料有潜力成为有效的红外选择性调控器件,具有快速响应、高着色效率及良好的耐久性等优点。

    图  9  AZO (a)和ITO (c)纳米晶膜的充电容量在多次充电和放电过程中的变化曲线;AZO (b)和ITO (d) 纳米晶膜的循环20000次前后的透过率变化曲线[23]
    Figure  9.  Change curves of the charging capacity of AZO (a) and ITO (c) nanocrystal films during multiple charging and discharging; Transmission curves of AZO (b) and ITO (d) nanocrystal films before and after 20000 cycles[23]

    理解纳米晶尺寸和掺杂对等离子体纳米晶电致变色性能的影响,对于分析等离子体调制机制及改进纳米晶电致变色性能具有重要意义。Zandi等[82]合成了一系列不同直径(7~15 nm)和掺杂量(1%~10%Sn)的单分散纳米晶。根据Sn掺杂量的不同,样品中的载流子浓度在3.48×1020和11.2×1020 cm−3之间变化。原位LSPR调制光谱表明,相同掺杂量的情况下,直径越小的纳米晶,LSPR吸收频率的调制量越大(图10(a))。在相同纳米晶大小的情况下,随着掺杂量的降低,LSPR吸收频率的调制量逐渐增加(图10(b))。Zandi等[82]验证了纳米晶的表面损耗层决定了LSPR调制的强度和频率,并大大降低了LSPR对周围环境的敏感性。

    图  10  (a) 不同尺寸的ITO纳米晶的LSPR峰位随电压变化的调制量[82];(b)不同掺杂量的ITO纳米晶的LSPR峰位随电压变化的调制量[82];(c) ITO纳米晶薄膜在0.1 mol/L LiClO4和0.1 mol/L 四正丁基高氯酸铵(TBAP)电解质中的透过率光谱曲线[22];(d) ITO纳米晶薄膜在0.1 mol/L LiClO4和0.1 mol/L TBAP电解质中的循环伏安曲线[22]
    Figure  10.  (a) Modulation amount of LSPR peak position of ITO nanocrystals with different sizes as a function of voltage[82]; (b) Modulation amount of the LSPR peak position of ITO nanocrystals with different doping concentrations as a function of voltage[82]; (c) Transmittance spectra of ITO nanocrystal film in 0.1 mol/L LiClO4 and 0.1 mol/L tetrabutylammonium perchlorate (TBAP) electrolyte[22]; (d) Cyclic voltammograms of ITO nanocrystal film in 0.1 mol/L LiClO4 and 0.1 mol/L TBAP electrolyte[22]

    电解质的性质对于等离子体纳米晶电致变色器件具有重要影响。Garcia等[22-23]研究了高氯酸锂(LiClO4)和四正丁基高氯酸铵(TBAP)基电解质对AZO和ITO纳米晶薄膜电致变色性能的影响。对于AZO和ITO纳米晶薄膜,无论电解液成分如何,电解液浓度越高,开关时间越快。这是由于在较高的电解质浓度下德拜屏蔽长度较短,双电层重组更快导致的。Li+基电解质和TBA+基电解质表现出相似的电荷分布和近红外光学调制(图10(c))。与Li+离子不同,TBA+离子的离子半径较大而不能嵌入至AZO和ITO纳米晶的晶格中。AZO和ITO纳米晶在Li+基电解质和TBA+基电解质表现出相似的循环伏安曲线,且未表现出明显的氧化还原吸收峰(图10(d)),这表明电容充放电是AZO和ITO纳米晶电致变色的主要机制[83]。总的来说,在所有的电解质情况下,AZO和ITO纳米晶薄膜的开关响应速度都在几秒钟或更短时间内发生。虽然离子扩散限制了低电解质浓度的开关响应速度,但在更高的电解质浓度下,纳米晶的界面电阻也可能会限制电致变色器件的开关响应速度。Williams等[84]首次使用固体多孔聚合物电解质(PPE)制备了基于ITO纳米晶的全固态电致变色器件。与采用0.1 mol/L LiCIO4液态电解质的器件相比,该全固态电致变色器件的近红外光调制范围为8.3%,比采用液态电解质的器件小1/3;此外循环稳定性也相对较差。目前,对固体电解质的研究较少。从实用和工业的角度来看,固态电解质性能稳定且便于封装[85],基于金属氧化物纳米晶的全固态等离子体电致变色器件还有待进一步研究。

    纳米晶电致变色层的膜层结构对等离子体电致变色器件的性能有很大影响。Garcia等[22]研究了不同膜厚的ITO纳米晶对其电致变色性能的影响(图11(a))。在较厚的薄膜中,纳米晶的LSPR吸收趋于饱和,在负偏压下近红外透射率最小。然而,在正偏压下的最大近红外透过率和可见光透过率,也会由于膜厚的增加而降低。纳米晶膜厚为~310 nm时,近红外透过率的动态范围最大,对可见透过率的影响最小。Llordes等[86]将ITO纳米晶通过共价键结合至无定形的NbO玻璃中(图11(b))。这种纳米晶和玻璃的结合方法不仅将两种功能成分结合在一种材料中,而且共价键的连接使能够通过操纵玻璃结构来改变其性质。利用上述结构制备的电致变色复合材料薄膜通过外加电压可以选择性地调控近红外光和可见光(图11(c))。此外,重构后的NbOx玻璃具有优异的性能,其光学对比度提高了5倍,并且具有优异的电化学稳定性,2000次循环后仍保留96%的电荷容量。Williams等[84]使用嵌段共聚物制备了介孔ITO纳米晶膜(图11(d))。与随机填充的致密的纳米晶薄膜相比,介孔ITO纳米晶膜在电致变色过程中的比容量提高了2倍以上(图11(e))。通过合理设计掺杂纳米晶的膜层结构,可以有效地发挥掺杂纳米晶的电致变色性能,改善等离子体电致变色器件的着色效率和循环稳定性等[87]

    图  11  (a) 在1.5 V和4 V下,不同薄膜厚度(150、310和460 nm)的ITO纳米晶的透过率光谱曲线[22];(b) ITO纳米晶结合至NbO玻璃中的SEM图像[86];(c) ITO-NbOx复合材料中在不同电压下的透过率光谱曲线[86];(d) 介孔ITO纳米晶膜的SEM图像[84];(e) 介孔ITO纳米晶膜和随机填充的致密的纳米晶薄膜在多次循环过程中的比电容[84]
    Figure  11.  (a) Transmission spectra at 1.5 V and 4 V for various film thickness (150, 310, and 460 nm ) of ITO nanocrystals[22]; (b) SEM images of ITO nanocrystals combined into glass[86]; (c) Optical switching response under applied electrochemical voltage of a ITO-in-NbOx composite[86]; (d) SEM images of mesoporous ITO nanocrystal films[84]; (e) Specific capacity of mesoporous ITO nanocrystal film and randomly filled dense nanocrystal film during multiple cycles[84]

    表3总结了掺杂In2O3纳米晶和掺杂ZnO纳米晶电致变色薄膜及器件的性能。掺杂In2O3和掺杂ZnO纳米晶是一类利用LSPR效应实现近红外电致变色性能的材料。由于其在电致变色过程中的电容特性,它们能实现高的近红外光调制量、快速的开关响应速度和良好的耐久性。目前关于掺杂In2O3纳米晶的研究较多,对掺杂ZnO纳米晶还有待进一步开展研究。

    表  3  基于掺杂In2O3纳米晶和掺杂ZnO纳米晶的电致变色薄膜及器件的性能
    Table  3.  Performance of electrochromic films and devices based on doped In2O3 nanocrystals and doped ZnO nanocrystals
    MaterialsElectrolyteOn/Off response time/sColoration efficiency/
    (cm2·C−1)
    Maximum optical modulationStability/cyclesRef.
    ITO nanocrystals0.1 mol/L LiClO4;
    1 mol/L LiClO4;
    0.1 mol/L TBAP;
    1 mol/L TBAP
    <3.4 (0.1 mol/L LiClO4);
    <0.3 (1 mol/L LiClO4);
    <0.24 (0.1 mol/L TBAP);
    <0.06 (1 mol/L TBAP)
    400 (1800 nm)25% (NIR)5000-20000[22-23]
    AZO nanocrystals0.1 mol/L LiClO4;
    1 mol/L LiClO4;
    0.1 mol/L TBAP;
    1 mol/L TBAP
    <0.9 (0.1 mol/L LiClO4);
    <0.19 (1 mol/L LiClO4);
    <0.11 (0.1 mol/L TBAP);
    <0.07 (1 mol/L TBAP)
    450 (2000 nm)39% (NIR)20000[23]
    ITO nanocrystals into NbOx glass0.1 mol/L LiClO40.01 (NIR); Several minutes (VIS)302000[86]
    ITO nanocrystals0.1 mol/L LiClO4<2.22493 (1750 nm)56% (1750 nm)[84]
    ITO nanocrystals1 mol/L LiClO4<82127083% (2000)100[88]
    ITO nanocrystals1 mol/L LiTFSI802 (1900 nm)39% (1900 nm)[89]
    ITO nanocrystals1 mol/L LiClO442% (2000 nm)[90]
    下载: 导出CSV 
    | 显示表格

    其他材料体系,如掺杂TiO2、掺杂CdO、掺杂SnO2、掺杂MoO3等,也被报道了基于电化学调控LSPR效应的电致变色现象。掺杂TiO2表现出类似于掺杂WO3的可见光-近红外双波段调控能力。其在可见光波段的电致变色归因于氧化还原反应的极化子机制,在近红外波段的电致变色归因于电容充放电的等离子体机制。Barawi和Liu等[91-92]分别合成了Nb:TiO2纳米晶,并演示了基于Nb:TiO2纳米晶的双波段调控电致变色器件。通过施加不同电位,可以实现可见光和近红外波段的独立控制。在较低电压下,即可实现近红外波段的光谱调制,在800~2000 nm的光谱调制量大于64%。在3~4 V的高电位下,发生可见光的光谱调制(图12(a))。Cao等[33, 93]制备了基于Ta∶TiO2纳米晶的双波段电致变色薄膜(图12(b))。该电致变色薄膜在550 nm和1600 nm的光谱调制量分别为89.1%和81.4%。薄膜在2000次循环后,550 nm和1600 nm的光调制损耗仅为0.2%和6.0%。此外该电致变色薄膜还表现出高的电荷存储能力。

    图  12  (a) Nb∶TiO2纳米晶电致变色器件在不同电压下的透过率光谱曲线[92];(b) Ta∶TiO2纳米晶薄膜在不同电压下的透过率光谱曲线和相应的光学图[93];(c) F-In∶CdO纳米晶薄膜在不同电压下的透过率光谱曲线[94];(d) F-In∶CdO纳米晶薄膜在Li+基电解质和硫代巴比妥酸(TBA+)基电解质中的循环伏安曲线[94];(e) F-In∶CdO纳米晶薄膜在Li+基电解质和TBA+基电解质中的透过率光谱曲线[94];(f) 基于MoO3-x纳米线的电致变色器件在不同电压下的吸收率曲线[95]
    Figure  12.  (a) Transmittance spectra of Nb∶TiO2 nanocrystal films at different voltages[92]; (b) Transmittance spectra and corresponding optical diagram of Ta∶TiO2 nanocrystal film at different voltages[93]; (c) Transmittance spectra of F-In∶CdO nanocrystal film under different voltage[94]; (d) Cyclic voltammograms of F-In∶CdO nanocrystal films in Li+-based electrolyte and thiobarbituric acid (TBA+)-based electrolyte[94]; (e) Transmittance spectra of F-In∶CdO nanocrystal film in Li+-based electrolyte and TBA+-based electrolyte[94]; (f) Absorption curves of electrochromic devices based on MoO3-x nanowires at different voltages[95]
    TBA—Thiobarbituric acid

    Giannuzzi等[94]研究了F-In共掺杂的CdO (F-In∶CdO)纳米晶的电致变色性能。F-In∶CdO纳米晶薄膜在1400~2200 nm范围内表现出良好的光学调制能力(图12(c))。F-In∶CdO纳米晶薄膜Li+基电解质和TBA+基电解质中表现出相似的光学调制量和循环伏安曲线,这验证了其基于LSPR效应的电容调控机制(图12(d)~12(e))。Rao等[95]通过氟化物辅助制备了单组份的氧空位MoO3-x纳米线。氧空位极大地改善了MoO3-x材料中的Li+离子的扩散,同时使MoO3-x纳米线在近红外产生LSPR吸收。基于MoO3-x纳米线制备的电致变色器件在开关响应速度、着色效率和循环稳定性等方面表现出优异的双波段电致变色性能(图12(f))。掺杂金属氧化物纳米晶LSPR效应的电化学调控解除了电致变色对材料体系的限制,理论上具有LSPR效应的掺杂金属氧化物纳米晶均可以实现相应的电致变色现象。新的基于电化学调控LSPR效应的材料体系仍有待进一步开发。

    金属氧化物纳米晶为电致变色器件带来了新的机遇,其为传统的电致变色器件提供了增强的电荷容量、更高的着色效率和更好的耐用性。此外,基于电化学调控金属氧化物纳米晶局域表面等离子体共振(LSPR)效应的新型电致变色现象的发现,为电致变色领域打开了新的大门。金属氧化物纳米晶的发展,使电致变色材料由能源和成本密集型的气相沉积方法转向湿化学法,为低成本制备电致变色器件提供了可能。金属氧化物纳米晶电致变色材料仍面临着诸多机遇与挑战:

    (1) 目前,人工智能(AI)的发展方兴未艾,在未来AI驱动科学研究将成为必然。近年来电致变色领域的众多论文累积了大量数据,可以作为AI的训练数据库。通过高通量实验可以快速优化出电致变色性能最优的材料参数,加速金属氧化物纳米晶电致变色材料的发展。此外,目前纳米晶材料仍受限于传统的电致变色金属氧化物材料体系,利用AI技术有望加速新型电致变色材料体系的探索,如多元素共掺杂氧化物纳米晶、导电聚合物(聚苯胺、聚噻吩)/金属氧化物纳米晶复合材料的开发;

    (2) 高质量纳米晶的批量化合成技术。金属氧化物纳米晶电致变色性能的稳定,需要精确控制米晶尺寸、形貌及掺杂量,这仍有赖于纳米晶自动化合成设备的进步。利用自动化的设备实现吨级纳米晶的批量化、低成本生产,可以促进金属氧化物纳米晶电致变色器件的大面积商业化应用;

    (3) 柔性化和可穿戴电致变色器件的开发。柔性化、可穿戴设备是未来的发展方向。柔性化的电致变色器件具有可携行、可贴敷的特点,可以降低电致变色器件的安装成本。将电致变色材料制备在纤维表面,可用于制备电致变色服装,兼顾美学和保温散热功能。

  • 图  1   金属氧化物纳米晶中局域表面等离子体的示意图[21]

    Figure  1.   Schematic diagram of local surface plasma in metal oxide nanocrystals[21]

    图  2   金属氧化物掺杂策略模式的示意图:(a) 未掺杂;(b) 替代掺杂;(c) 空位掺杂;(d) 间隙掺杂[42]

    A—Oxygen ion; B—Main cation; C—Dopant ion

    Figure  2.   Schematic diagram of doping strategy modes of metal oxide: (a) Origin; (b) Substitution doping; (c) Vacancy doping; (d) Interstitial doping[42]

    图  3   (a) 不同金属氧化物体系复介电函数的实部ε1和虚部ε2[43-47];(b) 由(a)中复介电函数推导出的相应折射率和吸收系数;(c) In∶CdO和Sn∶In2O3ωLSPR和LSPR吸收峰的半峰宽(FWHMLSPR)[25]

    Figure  3.   (a) Real ε1 and imaginary ε2 parts of complex dielectric functions for different metal oxide systems[43-47]; (b) Corresponding complex refractive index and absorption coefficient derived from the complex dielectric functions shown in panel (a); (c) ωLSPR and full width at half-maximum (FWHMLSPR) versus doping for both In∶CdO and Sn∶In2O3[25]

    ωLSPR—Frequency of LSPR; LSPR—Localized surface plasmon resonance

    图  4   纳米晶电致变色膜的微观变化示意图及光谱变化[21-22]

    Figure  4.   Schematic diagram of microscopic changes and spectral changes of nanocrystal electrochromic film[21-22]

    图  5   不同结构金属氧化物电致变色材料的着色效率、耐用度、光谱选择性和开关响应速度[21]

    Figure  5.   Coloring efficiency, durability, spectral selectivity, and response time of metal oxide electrochromic materials with different structures[21]

    VIS—Visible light; NIR—Near-infrared light; ITO—Indium tin oxid; AZO—Aluminum-doped zinc oxide

    图  6   (a) WO3纳米棒的SEM和TEM图像[54];(b) 不同电压下WO3纳米棒薄膜的UV-VIS光谱和在±3 V循环下WO3纳米棒薄膜在着色和漂白状态之间的开关响应速度[54];(c) 在不同电压下WO3纳米棒的颜色变化[54];(d) {100}晶面和{ˉ120}晶面为主的WO3纳米棒的着色效率[55]

    Figure  6.   (a) SEM and TEM images of the WO3 nanorod film[54]; (b) UV-VIS spectra of WO3 nanorod films at different voltages and on/off response time of WO3 nanorod films between coloring and bleaching states at ± 3 V[54]; (c) Color changes of the WO3 nanorod film at different voltages[54]; (d) Coloration efficiency of WO3 nanorods with {100} crystal facets and {ˉ120} crystal facets dominant[55]

    图  7   (a) Zn2+嵌入/脱出TiO2晶格的示意图和着色和褪色状态的光学照片[32];(b) TiO2纳米晶的TEM图像和尺寸分布[32];(c) 基于TiO2纳米晶的电致变色器件在550 nm波段、1.3~0 V循环下的实时透射光谱[32];(d) 在完全着色和褪色状态下,1000次循环前后,基于TiO2纳米晶的电致变色器件光学透过谱[32];(e) Nb12O29纳米片的STEM图像[59];(f) Nb12O29纳米片薄膜的在不同电压下的光谱图和光学照片[59]

    Figure  7.   (a) Schematic diagram of Zn2+ (de-)insertion of TiO2 lattice and photographs at fully bleached and colored state[32]; (b) TEM images and size distributions (inserts) of TiO2 nanocrystals[32]; (c) Real-time transmittance spectra of electrochromic devices based on TiO2 nanocrystals at 550 nm at 1.3-0 V[32]; (d) Optical transmittance spectra before and after 1000 cycles at fully bleached and colored states[32]; (e) STEM imaging of Nb12O29 nanoplatelets[59]; (f) Spectrum and photographs of Nb12O29 nanoplatelet film at different voltages[59]

    GXU—Guangxi Univiersity; OCP—Open circuit potential; NIR—Night-time ozone profile; τc—Coloring time; τb—Fading time

    图  8   (a) WO3-x纳米晶的TEM图像,插图为WO3-x纳米晶分散液的光学照片[73];(b) 不同电压下WO3-x纳米晶制备的电致变色器件的透过率变化光谱[73];(c) 不同电压下WO3-x晶体结构变化及相应的光学照片变化[73];(d) Cs:WO3纳米晶的晶体结构和形状各向异性对电致变色调制的着色效率和电荷容量的影响[79];(e) WO3-x纳米晶介孔膜的SEM图像[75];(f) WO3-x纳米晶介孔膜的在不同充电状态下LSPR吸收率的变化和致密WO3-x纳米晶薄膜在1.5 V饱和状态下的吸收率[75];(g) WO2.72纳米棒介孔膜的SEM图像[76];(h) WO2.72-NbO电致变色纳米复合膜的在不同电压下的透过率变化曲线和光学照片变化[76];(i) Na+和Li+电解质嵌入WO2.72纳米晶空隙位置的示意图[70]

    Figure  8.   (a) TEM diagram of WO3-x nanocrystals. The inset is optical photo of WO3-x nanocrystal dispersion[73]; (b) Transmission change spectra of electrochromic devices prepared by WO3-x nanocrystals at different voltages[73]; (c) WO3-x crystal structure changes and corresponding optical photo changes under different voltages[73]; (d) Effect of crystal structure and shape anisotropy of Cs: WO3 nanocrystals on the coloring efficiency and charge capacity of electrochromic modulation[79]; (e) SEM diagram of WO3-x nanocrystal mesoporous film[75]; (f) Change of LSPR absorbance of WO3-x nanocrystal mesoporous film under different charging states, and absorbance of compact WO3-x nanocrystal film under 1.5 V saturation[75]; (g) SEM diagram of WO2.72 nanorod mesoporous membrane[76]; (h) Transmittance change and optical photo change of WO2.72-NbO electrochromic nanocomposite film under different voltages[76];(i) Schematic Diagram of the Position of Na+ and Li+ Electrolytes Embedded in the Voids of WO2.72 Nanocrystals[70]

    图  9   AZO (a)和ITO (c)纳米晶膜的充电容量在多次充电和放电过程中的变化曲线;AZO (b)和ITO (d) 纳米晶膜的循环20000次前后的透过率变化曲线[23]

    Figure  9.   Change curves of the charging capacity of AZO (a) and ITO (c) nanocrystal films during multiple charging and discharging; Transmission curves of AZO (b) and ITO (d) nanocrystal films before and after 20000 cycles[23]

    图  10   (a) 不同尺寸的ITO纳米晶的LSPR峰位随电压变化的调制量[82];(b)不同掺杂量的ITO纳米晶的LSPR峰位随电压变化的调制量[82];(c) ITO纳米晶薄膜在0.1 mol/L LiClO4和0.1 mol/L 四正丁基高氯酸铵(TBAP)电解质中的透过率光谱曲线[22];(d) ITO纳米晶薄膜在0.1 mol/L LiClO4和0.1 mol/L TBAP电解质中的循环伏安曲线[22]

    Figure  10.   (a) Modulation amount of LSPR peak position of ITO nanocrystals with different sizes as a function of voltage[82]; (b) Modulation amount of the LSPR peak position of ITO nanocrystals with different doping concentrations as a function of voltage[82]; (c) Transmittance spectra of ITO nanocrystal film in 0.1 mol/L LiClO4 and 0.1 mol/L tetrabutylammonium perchlorate (TBAP) electrolyte[22]; (d) Cyclic voltammograms of ITO nanocrystal film in 0.1 mol/L LiClO4 and 0.1 mol/L TBAP electrolyte[22]

    图  11   (a) 在1.5 V和4 V下,不同薄膜厚度(150、310和460 nm)的ITO纳米晶的透过率光谱曲线[22];(b) ITO纳米晶结合至NbO玻璃中的SEM图像[86];(c) ITO-NbOx复合材料中在不同电压下的透过率光谱曲线[86];(d) 介孔ITO纳米晶膜的SEM图像[84];(e) 介孔ITO纳米晶膜和随机填充的致密的纳米晶薄膜在多次循环过程中的比电容[84]

    Figure  11.   (a) Transmission spectra at 1.5 V and 4 V for various film thickness (150, 310, and 460 nm ) of ITO nanocrystals[22]; (b) SEM images of ITO nanocrystals combined into glass[86]; (c) Optical switching response under applied electrochemical voltage of a ITO-in-NbOx composite[86]; (d) SEM images of mesoporous ITO nanocrystal films[84]; (e) Specific capacity of mesoporous ITO nanocrystal film and randomly filled dense nanocrystal film during multiple cycles[84]

    图  12   (a) Nb∶TiO2纳米晶电致变色器件在不同电压下的透过率光谱曲线[92];(b) Ta∶TiO2纳米晶薄膜在不同电压下的透过率光谱曲线和相应的光学图[93];(c) F-In∶CdO纳米晶薄膜在不同电压下的透过率光谱曲线[94];(d) F-In∶CdO纳米晶薄膜在Li+基电解质和硫代巴比妥酸(TBA+)基电解质中的循环伏安曲线[94];(e) F-In∶CdO纳米晶薄膜在Li+基电解质和TBA+基电解质中的透过率光谱曲线[94];(f) 基于MoO3-x纳米线的电致变色器件在不同电压下的吸收率曲线[95]

    Figure  12.   (a) Transmittance spectra of Nb∶TiO2 nanocrystal films at different voltages[92]; (b) Transmittance spectra and corresponding optical diagram of Ta∶TiO2 nanocrystal film at different voltages[93]; (c) Transmittance spectra of F-In∶CdO nanocrystal film under different voltage[94]; (d) Cyclic voltammograms of F-In∶CdO nanocrystal films in Li+-based electrolyte and thiobarbituric acid (TBA+)-based electrolyte[94]; (e) Transmittance spectra of F-In∶CdO nanocrystal film in Li+-based electrolyte and TBA+-based electrolyte[94]; (f) Absorption curves of electrochromic devices based on MoO3-x nanowires at different voltages[95]

    TBA—Thiobarbituric acid

    表  1   基于传统金属氧化物纳米晶的电致变色薄膜及器件的性能

    Table  1   Performance of electrochromic films and devices based on traditional metal oxide nanocrystals

    MaterialsElectrolyteOn/Off response
    time/s
    Coloration efficiency /
    (cm2·C−1)
    Maximum optical
    modulation
    Stability/CyclesRef.
    WO3 nanorods and nanospheroids1 mol/L H2SO442 (670 nm)3000[60]
    WO3 nanorods1 mol/L LiClO48 (632.8 nm)~66% (632.8 nm)3000[54]
    WO3 nanorods0.5 mol/L H2SO4<25 (632.8 nm)37.6 (632.8 nm)54.9% (800 nm)[61]
    WO3 nanorods1 mol/L LiClO4<20 (940 nm)80 (940 nm) 500[55]
    TiO2 Nanocrystals1 mol/L ZnSO4<9 (550 nm)37.3 (550 nm)66% (550 nm)1000[32]
    WO3/TiO2 nanowiresLiClO4<8 (630 nm)85.7 (630 nm)49% (630 nm) 100[62]
    NbO nanorods1 mol/L LiTFSI75 (1500 nm)~10% (800 nm) 500[63]
    Nb12O29 nanoplateletsLi-based77.3 (550 nm)75% (600 nm) 500[59]
    Note: LiTFSI—Lithium bistrifluoromethane sulfonimide.
    下载: 导出CSV

    表  2   基于掺杂WO3纳米晶的电致变色薄膜及器件的性能

    Table  2   Performance of electrochromic films and devices based on doped WO3 nanocrystals

    MaterialsElectrolyteOn/Off response
    time/s
    Coloration efficiency/
    (cm2·C−1)
    Maximum optical
    modulation
    Stability/CyclesRef.
    WO3-x nanowires0.5 mol/L Li-TFSI<891.7% (633 nm); 87.3% (1600 nm)1000[73]
    WO3-x nanoparticles1 mol/L LiClO4<1.550-60 (550 nm);
    317 (1200 nm)
    71.1% (550 nm); 84.6% (1200 nm)1000[72]
    W18O49 nanorods1 mol/L H2SO434.3% (750 nm)[74]
    WO3-x nanocrystal0.1 mol/L Li-TFSI71% (VIS);
    84% (NIR)
    2000[75]
    WO2.72-NbOx1 mol/L Li-TFSI78% (550 nm);
    63% (1200 nm)
    2000[76]
    WO2.72 nanocrystal0.5 mol/L NaClO4; 0.5 mol/L LiClO481 (Na+); 49 (Li+)[70]
    WO3-x nanowires1 mol/L Al(ClO4)3<8121 (633 nm);
    254 (1200 nm)
    93.2% (633 nm); 86.8% (1600 nm)2000[77]
    Cs:WO30.1 mol/L XPF6, where X is Li+, Na+, K+, or TBA+74.3 (TBA+); 70.1 (K+);
    72.7 (Na+); 103 (Li+)
    47% (800 nm);
    70% (1600 nm)
    [78]
    下载: 导出CSV

    表  3   基于掺杂In2O3纳米晶和掺杂ZnO纳米晶的电致变色薄膜及器件的性能

    Table  3   Performance of electrochromic films and devices based on doped In2O3 nanocrystals and doped ZnO nanocrystals

    MaterialsElectrolyteOn/Off response time/sColoration efficiency/
    (cm2·C−1)
    Maximum optical modulationStability/cyclesRef.
    ITO nanocrystals0.1 mol/L LiClO4;
    1 mol/L LiClO4;
    0.1 mol/L TBAP;
    1 mol/L TBAP
    <3.4 (0.1 mol/L LiClO4);
    <0.3 (1 mol/L LiClO4);
    <0.24 (0.1 mol/L TBAP);
    <0.06 (1 mol/L TBAP)
    400 (1800 nm)25% (NIR)5000-20000[22-23]
    AZO nanocrystals0.1 mol/L LiClO4;
    1 mol/L LiClO4;
    0.1 mol/L TBAP;
    1 mol/L TBAP
    <0.9 (0.1 mol/L LiClO4);
    <0.19 (1 mol/L LiClO4);
    <0.11 (0.1 mol/L TBAP);
    <0.07 (1 mol/L TBAP)
    450 (2000 nm)39% (NIR)20000[23]
    ITO nanocrystals into NbOx glass0.1 mol/L LiClO40.01 (NIR); Several minutes (VIS)302000[86]
    ITO nanocrystals0.1 mol/L LiClO4<2.22493 (1750 nm)56% (1750 nm)[84]
    ITO nanocrystals1 mol/L LiClO4<82127083% (2000)100[88]
    ITO nanocrystals1 mol/L LiTFSI802 (1900 nm)39% (1900 nm)[89]
    ITO nanocrystals1 mol/L LiClO442% (2000 nm)[90]
    下载: 导出CSV
  • [1] 张翔, 李文杰, 李森然, 等. 自供能电致变色器件研究进展[J]. 复合材料学报, 2021, 38(6):1724-1733. DOI: 10.13801/j.cnki.fhclxb.20210210.007

    ZHANG Xiang, LI Wenjie, LI Senran, et al. Research process in self-powered electrochromic devices[J]. Acta Materiae Compositae Sinica,2021,38(6):1724-1733(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210210.007

    [2] 汤凯, 管康威, 刘淑婧, 等. Ti掺杂核壳结构晶态@非晶WO3纳米线复合薄膜的制备与电致变色性能[J]. 复合材料学报, 2022, 40(6):3539-3552.

    TANG Kai, GUAN Kangwei, LIU Shujing, et al. Synthesis and electrochromic properties of Ti-doped core-shell crystalline@amorphous WO3 nanowire composite films[J]. Acta Materiae Compositae Sinica,2022,40(6):3539-3552(in Chinese).

    [3]

    WANG J L, SHENG S Z, HE Z, et al. Self-powered flexible electrochromic smart window[J]. Nano Letters,2021,21(23):9976-9982. DOI: 10.1021/acs.nanolett.1c03438

    [4]

    PHAN G T, VAN PHAM D, PATIL R A, et al. Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode[J]. Solar Energy Materials Solar Cells,2021,231:111306. DOI: 10.1016/j.solmat.2021.111306

    [5]

    ERGOKTAS M S, BAKAN G, KOVALSKA E, et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths[J]. Nature Photonics,2021,15(7):493-498. DOI: 10.1038/s41566-021-00791-1

    [6]

    ZHANG Q, YUAN L, GUAN F, et al. Substituent-adjusted electrochromic behavior of symmetric viologens[J]. Materials,2021,14(7):1702. DOI: 10.3390/ma14071702

    [7]

    HU C, LI L, ZHOU J, et al. Enhanced contrast of WO3-based smart windows by continuous Li-ion insertion and metal electroplating[J]. ACS Applied Materials Interfaces,2022,14(28):32253-32260. DOI: 10.1021/acsami.2c07546

    [8]

    GONG H, AI J, LI W, et al. Self-driven Infrared electrochromic device with tunable optical and thermal management[J]. ACS Applied Materials Interfaces,2021,13(42):50319-50328. DOI: 10.1021/acsami.1c14123

    [9]

    TAO X, LIU D, YU J, et al. Reversible metal electrodeposition devices: An emerging approach to effective light modulation and thermal management[J]. Advanced Optical Materials,2021,9(8):2001847. DOI: 10.1002/adom.202001847

    [10]

    LI M, LIU D, CHENG H, et al. Manipulating metals for adaptive thermal camouflage[J]. Science Advances,2020,6(22):eaba3494. DOI: 10.1126/sciadv.aba3494

    [11]

    ZHANG Q, LI X, QIN M, et al. Preparation of a PB@SiO2 photonic crystal composite with enhanced electrochromic performance[J]. ACS Applied Electronic Materials,2021,3(10):4441-4447. DOI: 10.1021/acsaelm.1c00600

    [12]

    PLATT J R. Electrochromism, a possible change of color producible in dyes by an electric field[J]. The Journal of Chemical Physics,1961,34(3):862-863. DOI: 10.1063/1.1731686

    [13]

    DEB S. A novel electrophotographic system[J]. Applied Optics,1969,8(101):192-195.

    [14]

    JEONG C Y, WATANABE H, TAJIMA K. Adhesive electrochromic WO3 thin films fabricated using a WO3 nanoparticle-based ink[J]. Electrochimica Acta,2021,389:138764. DOI: 10.1016/j.electacta.2021.138764

    [15]

    ZHAO Y, ZHANG X, LI W, et al. High-performance electrochromic WO3 film driven by controllable crystalline structure and its all-solid-state device[J]. Solar Energy Materials Solar Cells,2022,237:111564. DOI: 10.1016/j.solmat.2021.111564

    [16]

    HUANG S, ZHANG R, SHAO P, et al. Electrochromic performance fading and restoration in amorphous TiO2 thin films[J]. Advanced Optical Materials,2022,10(16):2200903. DOI: 10.1002/adom.202200903

    [17] 张作胜, 张勇, 宋艳斌, 等. 低维氧化镍/聚苯胺核壳纳米结构的控制生长与电致变色性能研究[J]. 真空科学与技术学报, 2021, 41(7):632-639. DOI: 10.13922/j.cnki.cjvst.202010022

    ZHANG Zuosheng, ZHANG Yong, SONG Yanbin, et al. Controlled growth and electrochromic properties of low dimensional nickel oxide/polyaniline core-shell nanostructures[J]. Chinese Journal of Vacuum Science and Technology,2021,41(7):632-639(in Chinese). DOI: 10.13922/j.cnki.cjvst.202010022

    [18] 王金敏, 后丽君, 马董云. 氧化钼电致变色材料与器件[J]. 无机材料学报, 2021, 36(5):461-470. DOI: 10.15541/jim20200416

    WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum oxide electrochromic materials and devices[J]. Journal of Inorganic Materials,2021,36(5):461-470(in Chinese). DOI: 10.15541/jim20200416

    [19]

    KUMAR K N, SHAIK H, PAWAR A, et al. Effect of annealing and oxygen partial pressure on the RF sputtered WO3 thin films for electrochromic applications[J]. Materials Today: Proceedings,2022,59:339-344. DOI: 10.1016/j.matpr.2021.11.185

    [20]

    CHEN H C, CHEN Y R, LIU T F. Photoelectrochemical performance of a UV-cured all-solid-state complementary ITO/WO3/Ta2O5/electrolyte/NiO/ITO electrochromic device deposited by ion-beam assisted electron-beam evaporation[J]. Electrochimica Acta,2021,382:138355. DOI: 10.1016/j.electacta.2021.138355

    [21]

    RUNNERSTROM E L, LLORDES A, LOUNIS S D, et al. Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals[J]. Chemical Communications,2014,50(73):10555-10572. DOI: 10.1039/C4CC03109A

    [22]

    GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Letters,2011,11(10):4415-4420. DOI: 10.1021/nl202597n

    [23]

    GARCIA G, BUONSANTI R, LLORDES A, et al. Near-infrared spectrally selective plasmonic electrochromic thin films[J]. Advanced Optical Materials,2013,1(3):215-220. DOI: 10.1002/adom.201200051

    [24]

    AGRAWAL A, CHO S H, ZANDI O, et al. Localized surface plasmon resonance in semiconductor nanocrystals[J]. Chemical Reviews,2018,118(6):3121-3207. DOI: 10.1021/acs.chemrev.7b00613

    [25]

    AGRAWAL A, JOHNS R W, MILLIRON D J. Control of localized surface plasmon resonances in metal oxide nanocrystals[J]. Annual Review of Materials Research,2017,47(1):1-31. DOI: 10.1146/annurev-matsci-070616-124259

    [26]

    WANG K, MENG Q, WANG Q, et al. Advances in energy-efficient plasmonic electrochromic smart windows based on metal oxide nanocrystals[J]. Advanced Energy and Sustainability Research, 2021, 2(12): 2170033.

    [27] 毛雯菲, 王敏敏. 局域表面等离子共振的影响因素及其研究进展[J]. 分析化学进展, 2021, 11(3):182-199. DOI: 10.12677/AAC.2021.113021

    MAO Wenfei, WANG Minmin. Influencing factors and research progress of local surface plasmon resonance[J]. Advances in Analytical Chemistry,2021,11(3):182-199(in Chinese). DOI: 10.12677/AAC.2021.113021

    [28]

    JIANG N, ZHUO X, WANG J. Active plasmonics: principles, structures, and applications[J]. Chemical Reviews,2018,118(6):3054-3099. DOI: 10.1021/acs.chemrev.7b00252

    [29]

    CONTI III C R, QUIROZ-DELFI G, SCHWARCK J S, et al. Carrier density, effective mass, and nuclear relaxation pathways in plasmonic Sn: In2O3 nanocrystals[J]. The Journal of Physical Chemistry C,2020,124(51):28220-28229. DOI: 10.1021/acs.jpcc.0c09448

    [30]

    ZHANG Z, ZHANG R, XU L, et al. Visible and infrared optical modulation of PSLC smart films doped with ATO nanoparticles[J]. Dalton Transactions,2021,50(29):10033-10040. DOI: 10.1039/D1DT01575C

    [31]

    WAINER P, KENDALL O, LAMB A, et al. Continuous growth synthesis of zinc oxide nanocrystals with tunable size and doping[J]. Chemistry of Materials,2019,31(23):9604-9613. DOI: 10.1021/acs.chemmater.9b02655

    [32]

    LIANG Y, CAO S, WEI Q, et al. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows[J]. Nano-Micro Letters,2021,13(12):120-131. DOI: 10.1007/s40820-021-00719-y

    [33]

    CAO S, ZHANG S, ZHANG T, et al. A visible light-near-infrared dual-band smart window with internal energy storage[J]. Joule,2019,3(4):1152-1162. DOI: 10.1016/j.joule.2018.12.010

    [34]

    GUO C, YAN P, ZHU C, et al. Amorphous MoO3−x nanosheets prepared by the reduction of crystalline MoO3 by Mo metal for LSPR and photothermal conversion[J]. Chemical Communications,2019,55(83):12527-12530. DOI: 10.1039/C9CC06704C

    [35]

    ZHANG S, CAO S, ZHANG T, et al. Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling[J]. Advanced Materials,2020,32(43):2004686. DOI: 10.1002/adma.202004686

    [36]

    LEE J T, DAS D, DAVIS G A, et al. Inorganic-organic interfacial electronic effects in ligand-passivated WO3–x nanoplatelets induce tunable plasmonic properties for smart windows[J]. ACS Applied Nano Materials,2022,5(7):9970-9980. DOI: 10.1021/acsanm.2c02218

    [37]

    MANDAL J, DU S, DONTIGNY M, et al. Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials,2018,28(36):1802180. DOI: 10.1002/adfm.201802180

    [38]

    WU C, SHAO Z, ZHAI W, et al. Niobium tungsten oxides for electrochromic devices with long-term stability[J]. ACS Nano,2022,16(2):2621-2628. DOI: 10.1021/acsnano.1c09234

    [39]

    KIM K, REIMNITZ L C, CHO S H, et al. Effect of nonincorporative cations on the size and shape of indium oxide nanocrystals[J]. Chemistry of Materials,2020,32(21):9347-9354. DOI: 10.1021/acs.chemmater.0c03281

    [40]

    MEHRA S, BERGERUD A, MILLIRON D J, et al. Core/shell approach to dopant incorporation and shape control in colloidal zinc oxide nanorods[J]. Chemistry of Materials,2016,28(10):3454-3461. DOI: 10.1021/acs.chemmater.6b00981

    [41]

    SAEZ CABEZAS C A, SHERMAN Z M, HOWARD M P, et al. Universal gelation of metal oxide nanocrystals via depletion attractions[J]. Nano Letters,2020,20(5):4007-4013. DOI: 10.1021/acs.nanolett.0c01311

    [42]

    LOUNIS S D, RUNNERSTROM E L, LLORDÉS A, et al. Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals[J]. The Journal of Physical Chemistry Letters,2014,5(9):1564-1574. DOI: 10.1021/jz500440e

    [43]

    RUNNERSTROM E L, BERGERUD A, AGRAWAL A, et al. Defect engineering in plasmonic metal oxide nanocrystals[J]. Nano Letters,2016,16(5):3390-3398. DOI: 10.1021/acs.nanolett.6b01171

    [44]

    SACHET E, LOSEGO M D, GUSKE J, et al. Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films[J]. Applied Physics Letters,2013,102(5):051111. DOI: 10.1063/1.4791700

    [45]

    ALI H E, GANESH V, HARITHA L, et al. Kramers-Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films[J]. Optics Laser Technology,2021,135:106691. DOI: 10.1016/j.optlastec.2020.106691

    [46]

    MENDELSBERG R J, ZHU Y, ANDERS A. Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory[J]. Journal of Physics D: Applied Physics,2012,45(42):425302. DOI: 10.1088/0022-3727/45/42/425302

    [47]

    SYGLETOU M, MARANGI F, VARAS S, et al. Effective medium optical modelling of indium tin oxide nanocrystal films[J]. Physical Chemistry Chemical Physics,2022,24(9):5317-5322. DOI: 10.1039/D1CP05897E

    [48]

    WANG J, SUN X W, JIAO Z. Application of nanostructures in electrochromic materials and devices: Recent progress[J]. Materials,2010,3(12):5029-5053. DOI: 10.3390/ma3125029

    [49]

    GUTPA J, SHAIK H, KUMAR K N, et al. PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: A review[J]. Materials Science in Semiconductor Processing,2022,143:106534. DOI: 10.1016/j.mssp.2022.106534

    [50]

    MA D, WANG J. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures[J]. Science China Chemistry,2017,60(1):54-62. DOI: 10.1007/s11426-016-0307-x

    [51]

    WANG M, THIMONT Y, PRESMANES L, et al. The effect of the oxygen ratio control of DC reactive magnetron sputtering on as-deposited non stoichiometric NiO thin films[J]. Applied Surface Science,2017,419:795-801. DOI: 10.1016/j.apsusc.2017.05.095

    [52]

    DIXIT D, MADHURI K V. Effect of oxygen partial pressure on the growth of molybdenum trioxide thin films[J]. Materials Today: Proceedings,2019,19:2688-2692. DOI: 10.1016/j.matpr.2019.10.140

    [53]

    HAN Q, WANG R, ZHU H, et al. The preparation and investigation of all thin film electrochromic devices based on reactively sputtered MoO3 thin films[J]. Materials Science in Semiconductor Processing,2021,126:105686. DOI: 10.1016/j.mssp.2021.105686

    [54]

    WANG J, KHOO E, LEE P S, et al. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods[J]. The Journal of Physical Chemistry C,2008,112(37):14306-14312. DOI: 10.1021/jp804035r

    [55]

    EVANS R C, AUSTIN R, MILLER R C, et al. Surface-facet-dependent electrochromic properties of WO3 nanorod thin films: Implications for smart windows[J]. ACS Applied Nano Materials,2021,4(4):3750-3759. DOI: 10.1021/acsanm.1c00215

    [56]

    YANG Z, CHOI D, KERISIT S, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review[J]. Journal of Power Sources,2009,192(2):588-598. DOI: 10.1016/j.jpowsour.2009.02.038

    [57]

    WEN R T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping[J]. ACS Applied Materials & Interfaces,2016,8(9):5777-5782.

    [58]

    DHANDAYUTHAPANI T, SIVAKUMAR R, ILANGOVAN R, et al. High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications[J]. Electrochimica Acta,2017,255:358-368. DOI: 10.1016/j.electacta.2017.09.187

    [59]

    LU H C, GHOSH S, KATYAL N, et al. Synthesis and dual-mode electrochromism of anisotropic monoclinic Nb12O29 colloidal nanoplatelets[J]. ACS Nano,2020,14(8):10068-10082. DOI: 10.1021/acsnano.0c03283

    [60]

    LEE S H, DESHPANDE R, PARILLA P A, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications[J]. Advanced Materials,2006,18(6):763-766. DOI: 10.1002/adma.200501953

    [61]

    WANG J, KHOO E, LEE P S, et al. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte[J]. The Journal of Physical Chemistry C,2009,113(22):9655-9658. DOI: 10.1021/jp901650v

    [62] 成明, 杨继凯, 杨馥瑜, 等. WO3/TiO2复合薄膜的制备及其电致变色性能[J]. 复合材料学报, 2019, 36(4):914-920.

    CHENG Ming, YANG Jikai, YANG Fuyu, et al. Preparation and electrochromic properties of WO3/TiO2 composite films[J]. Acta Materiae Compositae Sinica,2019,36(4):914-920(in Chinese).

    [63]

    ONG G K, SAEZ CABEZAS C A, DOMINGUEZ M N, et al. Electrochromic niobium oxide nanorods[J]. Chemistry of Materials,2020,32(1):468-475. DOI: 10.1021/acs.chemmater.9b04061

    [64]

    TANDON B, LU H C, MILLIRON D J. Dual-band electrochromism: Plasmonic and polaronic mechanisms[J]. The Journal of Physical Chemistry C,2022,126(22):9228-9238. DOI: 10.1021/acs.jpcc.2c02155

    [65]

    GUO C, YIN S, HUANG L, et al. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property[J]. ACS Applied Materials & Interfaces,2011,3(7):2794-2799.

    [66]

    WU C M, NASEEM S, CHOU M H, et al. Recent advances in tungsten-oxide-based materials and their applications[J]. Frontiers in Materials, 2019, 6: 49.

    [67]

    YANG C, CHEN J F, ZENG X, et al. Enhanced near-infrared shielding ability of (Li, K)-codoped WO3 for smart windows: DFT prediction validated by experiment[J]. Nanotechnology,2016,27(7):075203. DOI: 10.1088/0957-4484/27/7/075203

    [68]

    KIM J, AGRAWAL A, KRIEG F, et al. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals[J]. Nano Letters,2016,16(6):3879-3884. DOI: 10.1021/acs.nanolett.6b01390

    [69]

    NAKAKURA S, ARIF A F, MACHIDA K, et al. Cationic defect engineering for controlling the infrared absorption of hexagonal cesium tungsten bronze nanoparticles[J]. Inorganic Chemistry,2019,58(14):9101-9107. DOI: 10.1021/acs.inorgchem.9b00642

    [70]

    HEO S, DAHLMAN C J, STALLER C M, et al. Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ions[J]. Nano Letters,2020,20(3):2072-2079. DOI: 10.1021/acs.nanolett.0c00052

    [71]

    MANTHIRAM K, ALIVISATOS A P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals[J]. Journal of the American Chemical Society,2012,134(9):3995-3998. DOI: 10.1021/ja211363w

    [72]

    PARK S, PARK H S, DAO T T, et al. Solvothermal synthesis of oxygen deficient tungsten oxide nano-particle for dual band electrochromic devices[J]. Solar Energy Materials and Solar Cells,2022,242:111759. DOI: 10.1016/j.solmat.2022.111759

    [73]

    ZHANG S, CAO S, ZHANG T, et al. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance[J]. Materials Horizons,2018,5(2):291-297. DOI: 10.1039/C7MH01128H

    [74] 丁举宣, 许争杰, 陈章贤. W18O49纳米棒的制备及电致变色性能研究[J]. 化工新型材料, 2022, 50(2):90-94.

    DING Juxuan, XU Zhengjie, CHEN Zhangxian. Preparation and electrochromic property of W18O49 nanorod[J]. New Chemical Materials,2022,50(2):90-94(in Chinese).

    [75]

    KIM J, ONG G K, WANG Y, et al. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance[J]. Nano Letters,2015,15(8):5574-5579. DOI: 10.1021/acs.nanolett.5b02197

    [76]

    HEO S, KIM J, ONG G K, et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods[J]. Nano Letters,2017,17(9):5756-5761. DOI: 10.1021/acs.nanolett.7b02730

    [77]

    ZHANG S, CAO S, ZHANG T, et al. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life[J]. Energy & Environmental Science,2018,11(10):2884-2892.

    [78]

    ZYDLEWSKI B Z, LU H C, CELIO H, et al. Site-selective ion intercalation controls spectral response in electrochromic hexagonal tungsten oxide nanocrystals[J]. The Journal of Physical Chemistry C,2022,126(34):14537-14546. DOI: 10.1021/acs.jpcc.2c02865

    [79]

    HEO S, CHO S H, DAHLMAN C J, et al. Influence of crystalline and shape anisotropy on electrochromic modulation in doped semiconductor nanocrystals[J]. ACS Energy Letters,2020,5(8):2662-2670. DOI: 10.1021/acsenergylett.0c01236

    [80]

    PASQUARELLI R M, GINLEY D S, O'HAYRE R. Solution processing of transparent conductors: From flask to film[J]. Chemical Society Reviews,2011,40(11):5406-5441. DOI: 10.1039/c1cs15065k

    [81]

    JIA Y, LIU D Q, JIN Y Z, et al. Transparent dynamic infrared emissivity regulators[J]. Nature Communications, 2023, 14(1): 1-9.

    [82]

    ZANDI O, AGRAWAL A, SHEARER A B, et al. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals[J]. Nature Materials,2018,17(8):710-717. DOI: 10.1038/s41563-018-0130-5

    [83]

    LU H C, ZYDLEWSKI B Z, TANDON B, et al. Understanding the role of charge storage mechanisms in the electrochromic switching kinetics of metal oxide nanocrystals[J]. Chemistry of Materials,2022,34(12):5621-5633. DOI: 10.1021/acs.chemmater.2c00930

    [84]

    WILLIAMS T E, CHANG C M, ROSEN E L, et al. NIR-selective electrochromic heteromaterial frameworks: A platform to understand mesoscale transport phenomena in solid-state electrochemical devices[J]. Journal of Materials Chemistry C,2014,2(17):3328-3335. DOI: 10.1039/c3tc32247e

    [85] 贾汉祥, 曹逊, 金平实. 无机全固态电致变色材料与器件研究进展[J]. 无机材料学报, 2020, 35(5):511-524. DOI: 10.15541/jim20190305

    JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in inorganic all-solid-state electrochromic materials and devices[J]. Journal of Inorganic Materials,2020,35(5):511-524(in Chinese). DOI: 10.15541/jim20190305

    [86]

    LLORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature,2013,500(7462):323-326. DOI: 10.1038/nature12398

    [87] 许可俊, 汪刘应, 刘顾, 等. 无机复合纳米材料电致变色薄膜研究进展[J]. 稀有金属材料与工程, 2021, 50(5):1840-1852.

    XU Kejun, WANG Liuying, LIU Gu, et al. Progress in inorganic composite nanomaterial electrochromic film[J]. Rare Metal Materials and Engineering,2021,50(5):1840-1852(in Chinese).

    [88]

    PATTATHIL P, GIANNUZZI R, MANCA M. Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes[J]. Nano Energy,2016,30:242-251. DOI: 10.1016/j.nanoen.2016.10.013

    [89]

    MAHO A, SAEZ CABEZAS C A, MEYERTONS K A, et al. Aqueous processing and spray deposition of polymer-wrapped tin-doped indium oxide nanocrystals as electrochromic thin films[J]. Chemistry of Materials,2020,32(19):8401-8411. DOI: 10.1021/acs.chemmater.0c02399

    [90]

    REN Y, ZHOU X, WANG Q, et al. Novel preparation of ITO nanocrystalline films with plasmon electrochromic properties by the sol-gel method using benzoylacetone as a chemical modifier[J]. Ceramics International,2018,44(3):3394-3399. DOI: 10.1016/j.ceramint.2017.11.130

    [91]

    LIU R, REN Y, WANG J, et al. Preparation of Nb-doped TiO2 films by sol-gel method and their dual-band electrochromic properties[J]. Ceramics International,2021,47(22):31834-31842. DOI: 10.1016/j.ceramint.2021.08.067

    [92]

    BARAWI M, DE TRIZIO L, GIANNUZZI R, et al. Dual band electrochromic devices based on Nb-Doped TiO2 nanocrystalline electrodes[J]. ACS Nano,2017,11(4):3576-3584. DOI: 10.1021/acsnano.6b06664

    [93]

    CAO S, ZHANG S, ZHANG T, et al. Fluoride-assisted synthesis of plasmonic colloidal Ta-Doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation[J]. Chemistry of Materials,2018,30(14):4838-4846. DOI: 10.1021/acs.chemmater.8b02196

    [94]

    GIANNUZZI R, DE DONATO F, DE TRIZIO L, et al. Tunable near-infrared localized surface plasmon resonance of F, In-codoped CdO nanocrystals[J]. ACS Applied Materials & Interfaces,2019,11(43):39921-39929.

    [95]

    RAO T, ZHOU Y, JIANG J, et al. Fluoride-assisted preparation of plasmonic oxygen-deficient MoO3−x nanowires for dual-band electrochromic smart windows[J]. Journal of The Electrochemical Society,2022,169(6):066506. DOI: 10.1149/1945-7111/ac741e

  • 期刊类型引用(5)

    1. 刘圆敬,刘丹,单大勇,韩恩厚. 终电压对铝合金Mo和V黑色微弧氧化膜形成过程的影响. 表面技术. 2024(09): 34-42 . 百度学术
    2. 郭海静,丁雪莲. 电致变色材料在智能运动服装中的应用. 毛纺科技. 2024(06): 133-139 . 百度学术
    3. 史英迪,马凯,范梦祥,王丽荣,汤凯,柯香,刘太康,廖钊莹,董迎春. WO_3/PEDOT双层复合空心纳米球阵列的设计生长与电致变色/储能双功能特性. 复合材料学报. 2024(06): 3060-3069 . 本站查看
    4. 陶俊东,嵇海宁,刘东青. 可见光和红外自适应伪装技术研究进展. 化工进展. 2024(12): 6780-6793 . 百度学术
    5. 贺海燕. 具有显示效果的固态电致变色器件的研究现状. 广西物理. 2024(04): 31-33 . 百度学术

    其他类型引用(2)

  • 目的 

    电致变色材料是一类光学特性随电压可逆调控的材料,在智能窗、显示器、汽车变色天幕、智能热管理、军事伪装等领域应用广泛。近年来基于金属氧化物纳米晶的电致变色材料,由于其优异的性能和成本优势,引起了研究者的广泛关注。本文综述了金属氧化物纳米晶及其复合材料在新型电致变色领域中的最新研究进展,并对其发展前景进行了展望。

    结果 

    本文首先介绍了电化学调控纳米晶局域表面等离子体共振(LSPR)的基本原理。通过电化学改变金属氧化物纳米晶的电子浓度,可以对LSPR的频率和强度进行调制,实现等离子体电致变色。不同于传统的由氧化还原反应或离子嵌入/脱出引发的电致变色材料,等离子体电致变色展现了一种电容型的变色机制,从而表现出更快的响应时间和更高的着色效率。本文综述了纳米化的传统金属氧化物(WO、TiO、NbO等)的电致变色性能,分析了纳米化对传统金属氧化物材料性能的影响。本文还综述了基于电化学调控纳米晶LSPR效应的电致变色材料及器件的性能。本文综述了掺杂InO和掺杂ZnO纳米晶的掺杂量、尺寸、电解质以及纳米晶薄膜结构等对于电化学调控纳米晶LSPR效应的影响,并分析了相应电致变色器件的性能。此外本文还介绍了掺杂TiO、掺杂CdO等金属氧化物纳米晶的电致变色现象。

    结论 

    金属氧化物纳米晶为电致变色器件带来了新的机遇,其为传统的电致变色器件提供了增强的电荷容量、更高的着色效率和更好的耐用性。此外,基于电化学调控金属氧化物纳米晶LSPR效应的新型电致变色现象的发现,为电致变色领域打开了新的大门。金属氧化物纳米晶的发展,使电致变色材料由能源和成本密集型的气相沉积方法转向湿化学法,为低成本制备电致变色器件提供了可能。金属氧化物纳米晶电致变色材料仍面临着诸多机遇与挑战,如新型电致变色材料体系的探索,高质量纳米晶的批量化合成,以及柔性化和可穿戴电致变色器件的开发。

图(12)  /  表(3)
计量
  • 文章访问数:  1991
  • HTML全文浏览量:  621
  • PDF下载量:  193
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-04-24
  • 录用日期:  2023-05-01
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2023-09-14

目录

/

返回文章
返回