留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐碱和冻融环境下GFRP筋/ECC材料粘结滑移模型

吴丽丽 王慧 徐翔 林智斌

吴丽丽, 王慧, 徐翔, 等. 盐碱和冻融环境下GFRP筋/ECC材料粘结滑移模型[J]. 复合材料学报, 2023, 40(5): 2859-2875. doi: 10.13801/j.cnki.fhclxb.20220706.001
引用本文: 吴丽丽, 王慧, 徐翔, 等. 盐碱和冻融环境下GFRP筋/ECC材料粘结滑移模型[J]. 复合材料学报, 2023, 40(5): 2859-2875. doi: 10.13801/j.cnki.fhclxb.20220706.001
WU Lili, WANG Hui, XU Xiang, et al. Bond-slip model of GFRP bars/ECC interface in alkaline-saline or freeze-thaw environments[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2859-2875. doi: 10.13801/j.cnki.fhclxb.20220706.001
Citation: WU Lili, WANG Hui, XU Xiang, et al. Bond-slip model of GFRP bars/ECC interface in alkaline-saline or freeze-thaw environments[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2859-2875. doi: 10.13801/j.cnki.fhclxb.20220706.001

盐碱和冻融环境下GFRP筋/ECC材料粘结滑移模型

doi: 10.13801/j.cnki.fhclxb.20220706.001
基金项目: 国家自然科学基金(51678564;52178177);中国矿业大学(北京)越崎杰出学者奖励计划(2602021RC59);中央高校基本科研业务费项目(2022YJSLJ13);北京工业大学城市与工程安全减灾教育部重点实验室开放基金(2020B07)National Natural Science Foundation of China (51678564; 52178177); Yueqi Distinguished Scholar Program of China University of Mining and Technology, Beijing (2602021RC59); Fundamental Research Funds for the Central Universities (2022YJSLJ13); Open Fund for Key Laboratory of Urban and Engineering Safety Disaster Mitigation of Ministry of Education, Beijing University of Technology (2020B07)
详细信息
    通讯作者:

    吴丽丽,博士,教授,博士生导师,研究方向为钢结构、钢-混凝土组合结构 E-mail: jennywll@163.com

  • 中图分类号: TB332

Bond-slip model of GFRP bars/ECC interface in alkaline-saline or freeze-thaw environments

  • 摘要: 粘结滑移本构模型可以反映两种材料界面协同工作的性能,国内外对于玻璃纤维增强树脂复合材料(GFRP)筋/普通混凝土的粘结滑移研究较多,对GFRP筋与工程用水泥基复合材料(ECC)的研究较少,尤其是盐碱或冻融环境下。共制作了66个GFRP筋/混凝土拉拔试件,对比了普通环境、盐碱和冻融循环条件下,GFRP筋表面形式、基体类型和混凝土强度等因素变化时,试件的破坏形式、粘结机制及粘结滑移曲线的差异。研究结果表明:带肋GFRP筋/ECC试件主要发生拔出且带缝破坏;冻融循环后的带肋GFRP筋/普通混凝土试件由劈裂破坏变为拔出且带缝破坏;冻融循环使试件的粘结滑移曲线斜率变小;发生拔出破坏和拔出且带缝破坏的试件残余段曲线呈波浪式衰减,且残余应力峰值之间的滑移量约为一个肋间距。与现有粘结滑移模型进行拟合,根据拟合结果和GFRP筋/ECC材料在3种环境下实际粘结滑移特点,提出了包含参数ABα的粘结滑移曲线模型,与试验结果拟合相关系数R2均在0.9以上,得到参数ABα的取值分别集中在−0.6~0.2,−0.1~0.1和−0.6~−0.3之间。并根据不同学者的试验结果进一步验证了建议模型的可行性和普适性。

     

  • 图  1  玻璃纤维增强树脂复合材料(GFRP)筋的表面形式

    Figure  1.  Surface treatment of glass fiber reinforced polymer (GFRP) bars

    de—Effective diameter of GFRP bar; dr—Rib spacing of ribbed GFRP bar; hr—Height of ribbed GFRP bar; γ—Angle of rib inclination

    图  2  试验装置和试验过程

    Figure  2.  Test set-up and process

    图  3  GFRP筋/混凝土破坏模式

    Figure  3.  Failure modes of GFRP bar/concrete specimens

    图  4  GFRP筋/混凝土粘结机制示意图

    Figure  4.  Bond mechanism schematic of GFRP bar/concrete

    PVC—Polyvinyl chloride

    图  5  典型GFRP筋/混凝土试件的粘结滑移曲线

    Figure  5.  Typical bond stress-slip relationships of GFRP bar/concrete specimens

    图  6  典型GFRP筋/混凝土试件的粘结滑移曲线拟合

    R2—Fitting correlation coefficient

    Figure  6.  Curve fittings of the typical bond stress-slip relationships of GFRP bar/concrete specimens

    图  7  GFRP筋/工程用水泥基复合材料(ECC)粘结滑移曲线的通用模型

    Figure  7.  Generic response of bond stress-slip relationships of GFRP bars/engineered cementitious composite (ECC) material

    $ {\tau _0} $—Bond stress (bond strength) at the beginning of slip; $ {\tau _{\text{u}}} $—Peak bond stress; $ {s_{\text{u}}} $—Slip at peak bond stress; $ {\tau _{\text{r}}} $—Minimum bond stress of the descending branch; $ {s_{\text{r}}} $—Slip corresponding to the minimum bond stress of the descending branch; $ {\tau _{\text{m}}} $—Peak bond stress of the residual branch; $ {s_{\text{m}}} $—Slip at peak bond stress of the residual branch; dr—Spacing between the ribs of GFRP bar

    图  8  典型GFRP筋/混凝土试件的粘结实测曲线与建议滑移模型的拟合关系

    Figure  8.  Curve fittings of the typical bond stress-slip relationship with proposed model for GFRP bar/concrete specimens

    图  9  不同环境下建议GFRP筋/混凝土粘结滑移曲线

    Figure  9.  Proposed bond stress-slip relationships of GFRP bar/concrete in different conditions

    图  10  GFRP筋/混凝土试验数据与建议模型验证

    Figure  10.  Validation between experimental data and proposed model for GFRP bar/concrete

    表  1  混凝土配合比及强度测试结果

    Table  1.   Mix proportions and strength results of concretes

    ItemConcrete typeCementFly ashSilica sandPebbleWaterWater-
    binder
    ratio
    Polyvinyl alcohol
    (PVA) fiber
    Design compressive strength/MPaMeasured compressive strength/MPa
    E30ECC10.2510.610.490.0383035.72
    E50ECC10.2510.410.330.0335057.03
    N30Normal concrete11.223.754.230.820.383034.70
    下载: 导出CSV

    表  2  三种环境下拟制作的GFRP筋/混凝土拉拔试件

    Table  2.   GFRP bar/Concrete drawing specimens to be prepared in three environments

    GroupNumberSpecimenType of concreteCompressive strength/MPaDesigned conditionSurface treatmentNumber
    Unconditioned (control) specimens: Group A1GFRP(G)/N30-A0Normal concrete300Untreated3
    2GFRP(L)/N30-A0Normal concrete300Ribbed4
    3GFRP(G)/E30-A0ECC300Untreated3
    4GFRP(L)/E30-A0ECC300Ribbed4
    5GFRP(L)/E50-A0ECC500Ribbed4
    Specimens
    conditioned with alkaline-saline solution: Group B
    6GFRP(G)/N30-A60Normal concrete3060 dUntreated3
    7GFRP(L)/N30-A60Normal concrete3060 dRibbed4
    8GFRP(G)/E30-A30ECC3030 dUntreated3
    9GFRP(G)/E30-A60ECC3060 dUntreated3
    10GFRP(L)/E30-A30ECC3030 dRibbed3
    11GFRP(L)/E30-A60ECC3060 dRibbed4
    12GFRP(L)/E30-A90ECC3090 dRibbed3
    13GFRP(L)/E50-A60ECC5060 dRibbed4
    Specimens
    conditioned with
    freeze-thaw cycles: Group C
    14GFRP(L)/N30-F150Normal concrete30150 FT cyclesRibbed4
    15GFRP(L)/E30-F100ECC30100 FT cyclesRibbed4
    16GFRP(L)/E30-F150ECC30150 FT cyclesRibbed5
    17GFRP(L)/E30-F200ECC30200 FT cyclesRibbed4
    18GFRP(L)/E50-F150ECC50150 FT cyclesRibbed4
    Notes: GFRP(G) in GFRP(G)/N30-A0 means surface treatment of GFRP bar is untreated, N30 means normal concrete with 30 MPa design compressive strength, and A0 means soaked in saline solution for 0 d (day); GFRP(L) in GFRP(L)/E50-F150 means surface treatment of GFRP bar is ribbed, E50 refers to ECC with concrete design compressive strength of 50 MPa, and F150 means 150 FT (freeze-thaw) cycles.
    下载: 导出CSV

    表  3  3种环境下GFRP筋/混凝土试件的拔出试验结果

    Table  3.   Pull-out test results of GFRP bar/Concrete specimens in 3 kinds of environments

    GroupNumberSpecimensf/mmsl/mmPmax/kNτmax/MPaMean τmax/
    MPa
    τSD/MPaFailure
    mode
    Unconditioned (control) specimens: Group A 1 GFRP(G)/N30-A0-1 0.027 0.153 1.840 0.813 0.940 0.220 P
    GFRP(G)/N30-A0-2 0.033 0.110 2.700 1.194 P
    GFRP(G)/N30-A0-3 0.096 0.191 1.840 0.813 P
    2 GFRP(L)/N30-A0-1 1.472 4.318 34.050 15.053 15.527 1.319 S
    GFRP(L)/N30-A0-2 0.912 3.492 38.492 17.017 S
    GFRP(L)/N30-A0-3 0.586 3.078 32.822 14.511 S
    3 GFRP(G)/E30-A0-1 0.020 0.359 6.460 2.856 2.716 0.224 P
    GFRP(G)/E30-A0-2 0.027 0.076 5.560 2.458 P
    GFRP(G)/E30-A0-3 0.671 0.793 6.410 2.834 P
    4 GFRP(L)/E30-A0-1 1.130 4.182 38.898 17.197 16.033 1.008 P-C
    GFRP(L)/E30-A0-2 1.000 3.004 34.896 15.427 P-C
    GFRP(L)/E30-A0-3 0.860 4.890 35.006 15.476 P-C
    5 GFRP(L)/E50-A0-1 0.832 4.490 49.570 21.915 20.408 1.727 P-C
    GFRP(L)/E50-A0-2 0.932 4.362 47.014 20.785 P-C
    GFRP(L)/E50-A0-3 0.996 6.324 41.900 18.524 P-C
    Specimens conditioned with alkaline-saline solution: Group B 6 GFRP(G)/N30-A60-1 0.020 0.168 2.930 1.295 1.098 0.182 P
    GFRP(G)/N30-A60-2 0.020 0.134 2.400 1.061 P
    GFRP(G)/N30-A60-3 0.013 0.059 2.120 0.937 P
    7 GFRP(L)/N30-A60-1 0.814 3.320 37.092 16.398 16.616 0.526 S
    GFRP(L)/N30-A60-2 0.883 3.567 36.720 16.234 S
    GFRP(L)/N30-A60-3 0.706 2.985 38.941 17.216 S
    8 GFRP(G)/E30-A30-1 0.033 0.158 6.860 3.033 2.787 0.248 P
    GFRP(G)/E30-A30-2 0.023 0.193 5.740 2.538 P
    GFRP(G)/E30-A30-3 0.013 0.178 6.310 2.790 P
    9 GFRP(G)/E30-A60-1 0.151 0.544 7.434 3.286 3.255 0.592 P
    GFRP(G)/E30-A60-2 0.154 0.460 5.992 2.649 P
    GFRP(G)/E30-A60-3 0.334 0.490 8.665 3.831 P
    10 GFRP(L)/E30-A30-1 1.486 4.252 30.748 13.594 16.068 2.150 P-C
    GFRP(L)/E30-A30-2 1.226 6.454 39.538 17.480 P-C
    GFRP(L)/E30-A30-3 1.088 3.302 38.749 17.131 P-C
    11 GFRP(L)/E30-A60-1 0.850 1.938 35.268 15.592 15.090 0.585 P-C
    GFRP(L)/E30-A60-2 2.358 3.548 32.678 14.447 P-C
    GFRP(L)/E30-A60-3 1.542 2.580 34.454 15.232 P-C
    12 GFRP(L)/E30-A90-1 1.410 2.416 33.242 14.696 14.662 0.086 P-C
    GFRP(L)/E30-A90-2 1.732 2.984 32.944 14.564 P-C
    GFRP(L)/E30-A90-3 1.508 2.752 33.308 14.725 P-C
    13 GFRP(L)/E50-A60-1 1.422 2.468 38.616 17.072 17.284 1.340 P-C
    GFRP(L)/E50-A60-2 1.676 2.752 36.334 16.063 P-C
    GFRP(L)/E50-A60-3 1.320 2.908 42.340 18.718 P-C
    Specimens conditioned with freeze-thaw cycles: Group C 14 GFRP(L)/N30-F150-1 0.494 1.382 3.306 1.462 1.799 0.943 P-C
    GFRP(L)/N30-F150-2 1.075 1.185 6.480 2.865 P-C
    GFRP(L)/N30-F150-3 1.862 2.072 2.422 1.071 P-C
    15 GFRP(L)/E30-F100-1 1.138 2.966 27.522 12.167 12.345 0.206 P-C
    GFRP(L)/E30-F100-2 0.912 2.230 27.814 12.296 P-C
    GFRP(L)/E30-F100-3 0.960 3.010 28.436 12.571 P-C
    16 GFRP(L)/E30-F150-1 1.156 2.930 24.220 10.708 9.800 0.807 P-C
    GFRP(L)/E30-F150-2 1.156 2.726 20.728 9.164 P-C
    GFRP(L)/E30-F150-3 1.854 2.910 21.554 9.529 P-C
    17 GFRP(L)/E30-F200-1 1.312 3.364 15.810 6.990 5.212 2.041 P-C
    GFRP(L)/E30-F200-2 2.028 3.150 12.810 5.663 P-C
    GFRP(L)/E30-F200-3 2.466 3.076 6.748 2.983 P
    18 GFRP(L)/E50-F150-1 2.068 3.960 20.820 9.204 8.527 0.622 P-C
    GFRP(L)/E50-F150-2 1.980 3.552 18.054 7.982 P-C
    GFRP(L)/E50-F150-3 2.060 3.174 18.990 8.395 P
    Notes: sl—Slip at the load end of GFRP bar; sf—Slip at the free end of GFRP bar; Pmax—Peak load on the specimen in the pull-out test; τmax—Bond stress; τSD—Standard deviation of bond stresses; P—Pullout failure; S—Splitting failure; P-C—Pullout failure with cracks.
    下载: 导出CSV

    表  4  不同粘结滑移模型的GFRP筋/混凝土拟合参数取值

    Table  4.   Fitting parameters of different bond-slip models for GFRP bar/Concrete

    GroupSpecimenAscending branchOptimal modelAscending & descending branchOptimal model
    MalvarmBPECMRMalvarmBPE
    FGR2αR2λβR2FGR2αpR2
    Unconditioned (control) specimens: Group A Load end GFRP(L)/E30-A0-2 1.459 −0.470 0.988 0.777 0.992 1.111 1.570 0.965 mBPE 0.953 0.813 0.899 0.777 0.403 0.958 mBPE
    GFRP(L)/E50-A0-2 0.970 0.057 0.996 0.994 0.995 1.382 2.605 0.967 Malvar 0.516 0.894 0.925 0.994 0.398 0.854 Malvar
    GFRP(L)/N30-A0-1 0.865 0.206 0.998 1.034 0.996 1.241 3.300 0.961 Malvar
    GFRP(G)/E30-A0-1 1.158 −0.100 0.964 0.811 0.982 0.158 1.299 0.939 mBPE 0.55 1.328 0.906 0.811 0.163 0.673 Malvar
    Free end GFRP(L)/E30-A0-2 2.923 −2.087 0.661 0.427 0.844 0.782 0.406 0.804 mBPE 3.274 0.870 0.708 0.427 0.119 0.903 mBPE
    GFRP(L)/E50-A0-2 2.136 −1.172 0.908 0.581 0.953 0.465 0.800 0.896 mBPE 1.313 1.324 0.765 0.581 0.103 0.932 mBPE
    GFRP(L)/N30-A0-1 0.536 0.563 0.994 1.302 0.990 0.343 7.196 0.956 Malvar
    GFRP(G)/E30-A0-1 35.529 1.272 0.869 0.053 0.008 0.498 Malvar
    Specimens conditioned with alkaline-saline solution: Group B Load end GFRP(L)/E30-A30-1 1.511 −0.074 0.983 0.664 0.969 1.330 1.648 0.947 Malvar 1.110 0.613 0.980 0.664 0.552 0.976 Malvar
    GFRP(L)/E30-A60-2 2.072 −0.258 0.976 0.593 0.944 1.205 1.246 0.958 Malvar 1.900 0.354 0.977 0.593 0.477 0.955 Malvar
    GFRP(L)/E30-A90-3 1.550 −0.420 0.981 0.740 0.975 0.955 1.622 0.966 Malvar 1.144 0.925 0.949 0.740 0.299 0.973 mBPE
    GFRP(L)/E50-A60-1 1.461 0.360 0.986 0.717 0.959 0.672 1.883 0.979 Malvar 1.364 0.709 0.977 0.717 0.356 0.965 Malvar
    GFRP(L)/N30-A60-1 0.872 0.167 0.989 1.052 0.988 1.009 3.090 0.954 Malvar
    GFRP(G)/E30-A60-1 0.758 0.241 0.973 1.204 0.970 0.163 3.456 0.899 Malvar −0.101 1.787 0.789 1.204 0.162 0.952 mBPE
    Free end GFRP(L)/E30-A30-1 13.112 −12.250 0.557 0.191 0.758 0.657 0.278 0.734 mBPE 7.508 −0.297 0.867 0.191 0.208 0.926 mBPE
    GFRP(L)/E30-A60-2 6.192 −6.715 0.433 0.355 0.830 2.251 0.346 0.779 mBPE 4.995 −0.316 0.565 0.355 0.309 0.886 mBPE
    GFRP(L)/E30-A90-3 2.762 −1.848 0.595 0.489 0.819 1.578 0.425 0.788 mBPE 2.386 0.957 0.719 0.489 0.156 0.924 mBPE
    GFRP(L)/E50-A60-1 5.838 −4.927 0.745 0.302 0.930 0.849 0.356 0.886 mBPE 3.827 0.441 0.770 0.302 0.194 0.945 mBPE
    GFRP(L)/N30-A60-1 2.888 −2.255 0.788 0.472 0.938 0.464 0.587 0.899 mBPE
    Specimens conditioned with freeze-thaw cycles: Group C Load end GFRP(L)/E30-F100-1 1.784 −0.490 0.975 0.628 0.971 0.996 1.426 0.945 Malvar 1.597 0.714 0.952 0.628 0.313 0.966 mBPE
    GFRP(L)/E30-F150-2 1.929 −0.903 0.966 0.614 0.981 1.069 1.152 0.933 mBPE 1.750 0.670 0.912 0.614 0.303 0.948 mBPE
    GFRP(L)/E30-F200-2 4.808 −3.839 0.960 0.379 0.961 1.114 0.692 0.966 CMR 2.674 0.078 0.864 0.379 0.489 0.963 mBPE
    GFRP(L)/E50-F150-2 2.301 −1.037 0.967 0.540 0.965 1.249 1.132 0.943 Malvar 1.636 0.421 0.974 0.540 0.532 0.965 Malvar
    GFRP(L)/N30-F150-3 2.374 1.037 0.967 0.463 0.902 0.517 1.397 0.959 Malvar 2.418 0.572 0.968 0.463 0.261 0.920 Malvar
    Free end GFRP(L)/E30-F100-1 9.612 −9.737 0.649 0.256 0.815 0.548 0.355 0.801 mBPE 9.022 0.052 0.899 0.256 0.109 0.935 mBPE
    GFRP(L)/E30-F150-2 8.454 −3.300 0.257 0.228 0.828 0.879 0.234 0.781 mBPE 9.592 −0.212 0.891 0.228 0.122 0.929 mBPE
    GFRP(L)/E30-F200-2 10.493 −12.214 0.808 0.255 0.942 1.106 0.370 0.935 mBPE 4.478 −0.314 0.707 0.255 0.378 0.964 mBPE
    GFRP(L)/E50-F150-2 10.547 −11.023 0.516 0.226 0.783 1.133 0.280 0.740 mBPE 4.905 −0.109 0.871 0.226 0.269 0.948 mBPE
    GFRP(L)/N30-F150-3 5.261 −4.351 0.790 0.328 0.872 0.850 0.501 0.836 mBPE 3.399 0.377 0.843 0.328 0.236 0.924 mBPE
    Note: F, G, α, p, β and λ—Parameters based on curve-fitting.
    下载: 导出CSV

    表  5  典型GFRP筋/混凝土试件与建议模型拟合的参数取值和相关系数R2

    Table  5.   Fitting parameters and correlation coefficient R2 of typical GFRP bar/Concrete specimens fitted with proposed model

    GroupSpecimenAscending branchDescending branchResidual branchAll branch
    AR2BR2αR2R2
    Unconditioned (control) specimens:
    Group A
    Load end GFRP(L)/E30-A0-2 −0.155 0.997 0.044 0.928 −0.513 0.993 0.983
    GFRP(L)/E50-A0-2 0.096 0.997 0.148 0.892 −0.637 0.933 0.983
    GFRP(L)/N30-A0-1 0.109 0.993 0.993
    GFRP(G)/E30-A0-1 0.033 0.997 0.033 0.998 0.998
    Free end GFRP(L)/E30-A0-2 −0.081 0.997 0.003 0.942 −0.448 0.989 0.977
    GFRP(L)/E50-A0-2 −0.086 0.992 0.003 0.931 −0.452 0.934 0.981
    GFRP(L)/N30-A0-1 0.464 0.982 0.982
    GFRP(G)/E30-A0-1 −0.175 0.839 0 0.999 0.998
    Specimens conditioned with alkaline-saline solution: Group B Load end GFRP(L)/E30-A30-1 −0.445 0.981 0.068 0.987 −0.538 0.986 0.972
    GFRP(L)/E30-A60-2 −0.739 0.979 −0.031 0.987 −0.510 0.955 0.984
    GFRP(L)/E30-A90-3 −0.259 0.980 −0.042 0.979 −0.478 0.939 0.985
    GFRP(L)/E50-A60-1 −0.514 0.976 0.032 0.986 −0.297 0.988 0.983
    GFRP(L)/N30-A60-1 0.258 0.991 0.991
    GFRP(G)/E30-A60-1 0.524 0.998 −0.007 0.891 −0.144 0.911 0.960
    Free end GFRP(L)/E30-A30-1 −0.929 0.985 −0.008 0.975 −0.462 0.996 0.991
    GFRP(L)/E30-A60-2 −0.528 0.965 −0.012 0.988 −0.459 0.959 0.984
    GFRP(L)/E30-A90-3 −0.022 0.992 −0.013 0.984 −0.414 0.948 0.992
    GFRP(L)/E50-A60-1 −0.585 0.995 0.007 0.980 0.993
    GFRP(L)/N30-A60-1 −0.180 0.999 0.999
    GFRP(G)/E30-A60-1 0.654 0.986 0.001 0.864 −0.072 0.905 0.946
    Specimens conditioned with freeze-thaw cycles: Group C Load end GFRP(L)/E30-F100-1 −0.418 0.987 −0.038 0.983 −0.651 0.932 0.986
    GFRP(L)/E30-F150-2 −0.407 0.991 −0.059 0.977 −0.424 0.980 0.992
    GFRP(L)/E30-F200-2 −0.459 0.989 −0.070 0.966 −0.535 0.947 0.986
    GFRP(L)/E50-F150-2 −0.572 0.991 −0.009 0.959 −0.598 0.957 0.982
    GFRP(L)/N30-F150-3 −1.072 0.980 0.045 0.990 −0.266 0.961 0.985
    Free end GFRP(L)/E30-F100-1 −0.737 0.994 −0.003 0.985 −0.497 0.932 0.982
    GFRP(L)/E30-F150-2 −0.266 0.996 −0.008 0.983 −0.389 0.967 0.993
    GFRP(L)/E30-F200-2 −0.327 0.994 −0.010 0.974 −0.501 0.952 0.984
    GFRP(L)/E50-F150-2 −0.651 0.997 −0.009 0.972 −0.543 0.946 0.983
    GFRP(L)/N30-F150-3 −0.755 0.993 0.031 0.989 −1.672 0.973 0.994
    Note: A, B—Parameters based on curve-fitting.
    下载: 导出CSV
  • [1] ZHANG P, SU Y L, LIU Y, et al. Flexural behavior of GFRP reinforced concrete beams with CFRP grid-reinforced ECC stay-in-place formworks[J]. Composite Structures,2021,277:114653. doi: 10.1016/j.compstruct.2021.114653
    [2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [3] 宣广宇, 陆春华, 徐可, 等. 不同侵蚀环境下GFRP筋抗拉性能退化试验[J]. 哈尔滨工业大学学报, 2020, 52(8):161-168. doi: 10.11918/201908057

    XUAN Guangyu, LU Chunhua, XU Ke, et al. Experiment on tensile properties of GFRP bars exposed to different aggres-sive environments[J]. Journal of Harbin Institute of Technology,2020,52(8):161-168(in Chinese). doi: 10.11918/201908057
    [4] 吕西林, 周长东, 金叶. 火灾高温下GFRP筋和混凝土粘结性能试验研究[J]. 建筑结构学报, 2007(5):32-39, 88. doi: 10.3321/j.issn:1000-6869.2007.05.004

    LYU Xilin, ZHOU Changdong, JIN Ye. Test study on bond behavior between GFRP bar and concrete in high temperature[J]. Journal of Building Structures,2007(5):32-39, 88(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.05.004
    [5] 王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG Lei, LI Wei, CHEN Shuang, et al. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).
    [6] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005(4):10-18. doi: 10.3321/j.issn:1000-6869.2005.04.002

    LU Xinzheng, YE Lieping, TENG Jinguang, et al. Bond-slip model for FRP-to-concrete interface[J]. Journal of Building Structures,2005(4):10-18(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.04.002
    [7] WU L L, XU X, WANG H, et al. Experimental study on bond properties between GFRP bars and self-compacting concrete[J]. Construction and Building Materials,2022,320:126186. doi: 10.1016/j.conbuildmat.2021.126186
    [8] 郝庆多, 王言磊, 侯吉林, 等. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008(10):158-165, 179.

    HAO Qingduo, WANG Yanlei, HOU Jilin, et al. Experimental study on bond behavior of GFRP ribbed rebars[J]. Engineering Mechanics,2008(10):158-165, 179(in Chinese).
    [9] 张黎飞, 郑愚, 胡少伟, 等. 玻璃纤维复材筋与水泥基复合材料界面力学性能试验研究及精细化有限元仿真[J]. 工业建筑, 2019, 49(9):10-17.

    ZHANG Lifei, ZHENG Yu, HU Shaowei, et al. Investigation of mechanical properties of GFRP and ECC interface and refined finite element simulation[J]. Industrial Construction,2019,49(9):10-17(in Chinese).
    [10] MAZAHERIPOUR H, BARROS J, SENA-CRUZ J M, et al. Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete[J]. Composite Structures,2013,95(1):202-212.
    [11] FAHMY M, AHMED S, WU Z. Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete[J]. Construction and Building Materials,2021,289:122844. doi: 10.1016/j.conbuildmat.2021.122844
    [12] NEPOMUCENO E, SENA-CRUZ J, CORREIA L, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials,2021,287:123042. doi: 10.1016/j.conbuildmat.2021.123042
    [13] ALACHEK I, REBOUL N, JURKIEWIEZ B. Bond strength’s degradation of GFRP-concrete elements under aggressive exposure conditions[J]. Construction and Building Materials,2018,179:512-525. doi: 10.1016/j.conbuildmat.2018.05.249
    [14] BAZLI M, ASHRAFI H, OSKOUEI A V. Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments[J]. Construction and Building Materials,2017,148:429-443. doi: 10.1016/j.conbuildmat.2017.05.046
    [15] 张海霞, 朱天泽, 黄妍. 盐腐蚀环境下内嵌FRP筋加固混凝土界面黏结性能试验研究[J]. 建筑结构学报, 2021, 42(S1):433-441.

    ZHANG Haixia, ZHU Tianze, HUANG Yan. Experimental study on interface bond behavior of concrete strengthened with NSM FRP bars under salt corrosion environment[J]. Journal of Building Structures,2021,42(S1):433-441(in Chinese).
    [16] ZHOU Y W, FU H K, LI P D, et al. Bond behavior between steel bar and engineered cementitious composite (ECC) considering lateral FRP confinement: Test and modeling[J]. Composite Structures,2019,226(C):111206.
    [17] SINGH M, SAINI B, CHALAK H D. Performance and composition analysis of engineered cementitious composite (ECC) – A review[J]. Journal of Building Engineering,2019,26:100851. doi: 10.1016/j.jobe.2019.100851
    [18] 陈剑. GFRP筋与纤维混凝土粘结滑移试验研究[D]. 大连: 大连理工大学, 2008.

    CHEN Jian. The experimental research on bond-slip performance of GFRP bars embedded in fiber reinforced concrete[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
    [19] 吴丽丽, 琚祥凯, 丛琪明, 等. 冻融循环后GFRP筋与ECC粘结性能试验研究[J]. 华南理工大学学报(自然科学版), 2019, 47(12):53-61.

    WU Lili, JU Xiangkai, CONG Qiming, et al. Experimental study of bonding properties between GFRP bars and ECC after freezing-melting circulation[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(12):53-61(in Chinese).
    [20] 郝润奇. GFRP筋与纤维混凝土粘结性能研究[D]. 西安: 长安大学, 2019.

    HAO Runqi. Study on bond properties of GFRP bars and fiber concrete[D]. Xi'an: Chang'an University, 2019(in Chinese).
    [21] 孙丽, 杨泽宇, 朱春阳, 等. GFRP筋纤维混凝土黏结滑移性能试验研究[J]. 土木工程学报, 2020, 53(S2):259-264. doi: 10.15951/j.tmgcxb.2020.s2.039

    SUN Li, YANG Zeyu, ZHU Chunyang, et al. Study on bonding properties of reinforced composite concrete structure with fiber materials[J]. China Civil Engineering Journal,2020,53(S2):259-264(in Chinese). doi: 10.15951/j.tmgcxb.2020.s2.039
    [22] 吴丽丽, 王云飞, 谢灵慧, 等. 玻璃纤维增强聚合物复合材料筋与工程水泥基复合材料黏结性能[J]. 复合材料学报, 2020, 37(3):696-706. doi: 10.13801/j.cnki.fhclxb.20190729.001

    WU Lili, WANG Yunfei, XIE Linghui, et al. Bonding behavior between glass fiber reinforced polymer composite bars and engineered cementitious composite[J]. Acta Materiae Compositae Sinica,2020,37(3):696-706(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190729.001
    [23] 回祥硕. GFRP筋与纤维混凝土的粘结性能研究[D]. 沈阳: 沈阳建筑大学, 2018.

    HUI Xiangshuo. Research on bond behavior of GFRP bar and fiber reinforced concrete[D]. Shenyang: Shenyang Jianzhu University, 2018(in Chinese).
    [24] MALVAR L J. Bond stress-slip characteristics of FRP rebars, Rep TR 2012-SHR[R]. Port Hueneme: Naval Facilities Engineering Service Center, 1994.
    [25] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under genera-lized excitations: Experimental results and analytical model[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1983.
    [26] COSENZA E, MANFREDI G, REALFONZO R. Analytical modelling of bond between FRP reinforcing bars and concrete[C]//“Non-Metallic (FRP) Reinforcement for Concrete Structures”-Proceedings of the Second International RILEM Symposium (FRPRCS-2). Ghent: RILEM Publications, 1995.
    [27] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [28] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7): 41-43, 82.

    GAO Danying, ZHU Haitang, XIE Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 33(7): 41-43, 82(in Chinese).
    [29] YAN F, LIN Z, ZHANG D, et al. Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution[J]. Composites Part B: Engineering ,2016,116:406-421.
    [30] 大连理工大学. 纤维混凝土试验方法标准: CECS 13: 2009[S]. 北京: 中国计划出版社, 2009.

    Dalian University of Technology. Standard test methods for fiber reinforced concrete: CECS 13: 2009[S]. Beijing: China Planning Press, 2009(in Chinese).
    [31] ASTM. Standard test method for bond strength of fiber reinforced polymer matrix composite bars to concrete by pullout testing: ASTM D7913/D7913 M[S]. West Conshohocken: ASTM International, 2020.
    [32] American Concrete Institute. Guide test methods for fiber-reinforced polymer (FRP) composites for reinforcing or strengthening concrete and masonry structures: ACI 440.3 R[S]. United States: American Concrete Institute, 2012.
    [33] 牛全林. 预防盐碱环境中混凝土结构耐久性病害的研究及应用[D]. 北京: 清华大学, 2004.

    NIU Quanlin. Studies and application of the technology to prevent danger of concrete structure subjected to alkaline saline corrosions[D]. Beijing: Tsinghua University, 2004(in Chinese).
    [34] 米向乾. GFRP筋及GFRP筋混凝土柱受压性能研究[D]. 沈阳: 沈阳建筑大学, 2012.

    MI Xiangqian. Study on the compressive behavior of GFRP bars and GFRP reinforced concrete columns[D]. Shenyang: Shenyang Jianzhu University, 2012(in Chinese).
    [35] KATZ A. Bond mechanism of FRP rebars to concrete[J]. Materials and Structures,1999,32(224):761-768.
    [36] BELARBI A, WANG H. Bond durability of FRP bars embedded in fiber-reinforced concrete[J]. Journal of Composites for Construction,2012,16(4):371-380. doi: 10.1061/(ASCE)CC.1943-5614.0000270
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  332
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-06-19
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回