留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质层状钛合金增材构件微观组织与力学性能

郭顺 徐俊强 杨东青 顾介仁 周琦

郭顺, 徐俊强, 杨东青, 等. 异质层状钛合金增材构件微观组织与力学性能[J]. 复合材料学报, 2022, 39(12): 6017-6027. doi: 10.13801/j.cnki.fhclxb.20220711.001
引用本文: 郭顺, 徐俊强, 杨东青, 等. 异质层状钛合金增材构件微观组织与力学性能[J]. 复合材料学报, 2022, 39(12): 6017-6027. doi: 10.13801/j.cnki.fhclxb.20220711.001
GUO Shun, XU Junqiang, YANG Dongqing, et al. Microstructure and mechanical properties of heterogeneous layered titanium alloy components fabricated via additive manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6017-6027. doi: 10.13801/j.cnki.fhclxb.20220711.001
Citation: GUO Shun, XU Junqiang, YANG Dongqing, et al. Microstructure and mechanical properties of heterogeneous layered titanium alloy components fabricated via additive manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6017-6027. doi: 10.13801/j.cnki.fhclxb.20220711.001

异质层状钛合金增材构件微观组织与力学性能

doi: 10.13801/j.cnki.fhclxb.20220711.001
基金项目: 国家自然科学基金青年基金(52105367);江苏省博士后资助计划(2021K591C)
详细信息
    通讯作者:

    杨东青,博士,副教授,研究方向为旁路电弧复合增材制造及焊接 E-mail: yangdq@njust.edu.cn

  • 中图分类号: TG456.2

Microstructure and mechanical properties of heterogeneous layered titanium alloy components fabricated via additive manufacturing

  • 摘要: 采用双丝等离子实现了TC4与TA2交替沉积的异质层状钛合金构件的增材制造,构件具有良好的沉积形貌及力学性能。采用了OM、SEM、背散射电子衍射技术(EBSD)、XRD等方法对构件进行了微观组织表征,并结合显微硬度和压缩性能测试了其力学性能。研究结果表明:TA2和TC4区域主要组织分别是由片层α相和α+β的网篮组织/集束组织组成。各区域晶粒沿着热流反方向凝固生长,TC4区域与TA2区域的晶界特征和晶体取向具有相似规律,但由于异质材料相生长差异,层与层之间β相晶粒生长方向发生改变,TC4区域的原始β相会沿着已沉积TA2区域晶粒某一择优取向生长,进而限制了β相连续生长为粗大柱状晶。层状结构中TC4区域的硬度明显高于TA2区域,并沿着沉积方向硬度呈现增加的趋势。增材构件沿着不同方向具有接近的抗压强度,近2.0 GPa,但是TC4和TA2交替形成的层状特殊结构,其沿着沉积方向具有高的断裂应变(0.33),沿着扫描方向具有高的屈服强度(1133 MPa)。

     

  • 图  1  层状TC4-TA2钛合金增材试样增材策略和宏观形貌

    Figure  1.  Schematic diagram of building strategy, and macrograph of the deposited wall of layered TC4-TA2 titanium alloy

    图  2  层状TC4-TA2钛合金不同区域的XRD图谱

    Figure  2.  XRD patterns of the specimen in the different regions of layered TC4-TA2 titanium alloy

    图  3  层状TC4-TA2钛合金增材构件宏观横截面和显微组织

    Figure  3.  Macro/micro-structure of the as-deposited samples of layered TC4-TA2 titanium alloy

    图  4  层状TC4-TA2钛合金背散射电子衍射技术(EBSD)测试结果:(a) 灰度图;(b) 物相分布图;(c) 反极图(IPF);(d)图例

    Figure  4.  Backscattered electron diffraction technique (EBSD) results of layered TC4-TA2 titanium alloy: (a) Grayscale image; (b) Phase map; (c) Inverse pole figures (IPF); (d) Figure legends

    图  5  TA2区域 (a) 和TC4区域 (b) 晶粒取向差分布直方图; TA2区域 (c) 和TC4区域 (d) 的极图

    Figure  5.  Misorientation distribution maps in the TA2 (a) and TC4 (b) regions; Pole figures of the TA2 (c) and TC4 (d) regions

    δHAGB—High angle grain boundary

    图  6  层状TC4-TA2钛合金不同区域晶粒尺寸分布

    Figure  6.  Grain size distribution in the different regions of layered TC4-TA2 titanium alloy

    图  7  层状TC4-TA2钛合金试样横截面显微硬度

    Figure  7.  Microhardness profile on the cross-section of layered TC4-TA2 titanium alloy specimens

    图  8  层状TC4-TA2钛合金增材试样压缩应力-应变曲线

    Figure  8.  Engineering stress-strain of as-deposited specimens of layered TC4-TA2 titanium alloy

    表  1  基板及焊丝化学成分

    Table  1.   Chemical compositions of base plate and wires wt%

    ElementNOHFeAlVTi
    Base plate0.030.100.010.216.424.30Bal.
    Wire of TC40.020.120.010.196.093.94Bal.
    Wire of TA20.020.130.010.13Bal.
    Note: Bal.—Banlance.
    下载: 导出CSV

    表  2  增材过程工艺参数

    Table  2.   Parameters of additive manufacturing

    ParametersCurrent/ADeposition velocity/
    (m·min−1)
    Shield gas
    flux/(L·min−1)
    Plasma gas flow
    rate/(L·min−1)
    Wire feeding speed
    of TC4/(m·min−1)
    Wire feeding speed
    of TA2/(m·min−1)
    1300.3200.80.80.8
    下载: 导出CSV

    表  3  层状TC4-TA2钛合金与单一材料TA2和TC4压缩性能公开报告与本研究对比

    Table  3.   Compressive properties of layered TC4-TA2 titanium alloy compared to that of single material of TA2 and TC4 published in the literatures

    MaterialDirection
    (test)
    σCY/MPaσUCS/MPaεf/%Percent change in σCY/%Percent change in εf/%
    CP-Ti [19-20] Z 530 820 60.0 83.4 −45.0
    CP-Ti SLM [21] Z 620 1100 51.0 56.8 −35.3
    X 620 1050 51.0 82.7 −52.9
    CP-Ti LENS [19, 22] Z 395±10 880±15 50.0±2.0 146.1 −34.0
    TC4SPS [23] Z 1354 1735 10.0 −28.2 230
    TC4SLM [24] Z 1400±10 1699±17 18.6±4.9 −30.6 77.4
    X 1375±20 1741±18.7 23.3±0.8 −17.6 3.0
    TC4WAAM [25] Z 960±12 1 918±18 13.8±1.0 1.3 139.1
    X 971±10 1 891±112 19.5±1.0 16.7 23.1
    Notes: σCY—Compressive yield strength; σUCS—Ultimate compressive strength; εf—Fracture strain; CP-Ti—Commercially pure titanium; SLM—Selective laser melting; LENS—Laser engineered net shaping; SPS—Spark plasma sintering; WAAM—Wire and arc additive manufacturing.
    下载: 导出CSV
  • [1] ZHENG J, CHEN S, JIANG L, et al. Effect of carbon content on the microstructure and mechanical properties of NiCrFe-7 A alloys synthesized by wire arc additive manufacturing[J]. Materials Science and Engineering: A,2022,842:142925. doi: 10.1016/j.msea.2022.142925
    [2] NG C H, BERMINGHAM M J, YUAN L, et al. Towards β-fleck defect free additively manufactured titanium alloys by promoting the columnar to equiaxed transition and grain refinement[J]. Acta Materialia,2022,224:117511. doi: 10.1016/j.actamat.2021.117511
    [3] CHAO Q, MATETI S, ANNASAMY M, et al. Nanoparticle-mediated ultra grain refinement and reinforcement in additively manufactured titanium alloys[J]. Additive Manufacturing,2021,46:102173. doi: 10.1016/j.addma.2021.102173
    [4] WANG C, SUDER W, DING J, et al. Wire based plasma arc and laser hybrid additive manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2021,293:117080. doi: 10.1016/j.jmatprotec.2021.117080
    [5] WANG L, ZHANG Y, HUA X, et al. Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: microstructure evolution and mechanical properties[J]. Materials Science and Engineering: A,2021,812:141056. doi: 10.1016/j.msea.2021.141056
    [6] WANG K, LIU Y, SUN Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. Journal of Alloys and Compounds,2020,819:152936. doi: 10.1016/j.jallcom.2019.152936
    [7] LIN J, LV Y, LIU Y, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29. doi: 10.1016/j.jmbbm.2016.12.015
    [8] MOGHIMIAN P, POIRIE T, HABIBNEJAD-KORAYEM M, et al. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys[J]. Additive Manufacturing,2021,43:102017. doi: 10.1016/j.addma.2021.102017
    [9] 李长富, 郑鉴深, 周思雨, 等. CMT电弧增材制造TC4钛合金的显微组织与力学性能[J]. 中国有色金属学报, 2022, 32(9): 2609-2619.

    LI Changfu, ZHENG Jianshen, ZHOU Siyu, et al. Microstructure and mechanical properties analysis of CMT wire arc additive manufactured Ti-6Al-4V titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 2609-2619(in Chinese).
    [10] 魏志祥, 李国选, 汪月勇, 等. TIG电弧增材制造TC4钛合金的组织与性能[J]. 有色金属工程, 2021, 11(10):14-19. doi: 10.3969/j.issn.2095-1744.2021.10.003

    WEI Zhixiang, LI Guoxuan, WANG Yueyong, et al. Microstructure and properties of TC4 titanium alloy produced by TIG arc additive manufacturing[J]. Nonferrous Metal Engineering,2021,11(10):14-19(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.10.003
    [11] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006
    [12] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征[J]. 复合材料学报, 2019, 36(10):2398-2406. doi: 10.13801/j.cnki.fhclxb.20190301.001

    SHAO Haobin, ZHU Jun, ZHOU Qi, et al. Characteristics of microstructure and size change of the shell of Hyriopsis cumingii[J]. Acta Materiae Compositae Sinica,2019,36(10):2398-2406(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190301.001
    [13] 徐俊强, 彭勇, 周琦, 等. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9):59-64, 163-164.

    XU Junqiang, PENG Yong, ZHOU Qi, et al. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. Transactions of the China Welding Institution,2019,40(9):59-64, 163-164(in Chinese).
    [14] XU J, ZHU J, FAN J, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication[J]. Vacuum,2019,167:364-373. doi: 10.1016/j.vacuum.2019.06.030
    [15] LIM S C V, YANG K V, YANG Y, et al. Tracking microstructure, texture and boundary misorientation evolution of hot deformed and post-deformation annealed Ti-6Al-4V alloy[J]. Materials Science and Engineering: A,2016,651:524-534. doi: 10.1016/j.msea.2015.09.060
    [16] BELADI H, CHAO Q, ROHRER G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy[J]. Acta Materialia,2014,80:478-489. doi: 10.1016/j.actamat.2014.06.064
    [17] BAYKASOGLU C, AKYILDIZ O, TUNAY M, et al. A process-microstructure finite element simulation framework for predicting phase transformations and microhardness for directed energy deposition of Ti-6Al-4V[J]. Additive Manufacturing,2020,35:101252. doi: 10.1016/j.addma.2020.101252
    [18] 李雷, 于治水, 张培磊, 等. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12):37-43. doi: 10.12073/j.hjxb.2018390294

    LI Lei, YU Zhishui, ZHANG Peilei, et al. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. Transactions of the China Welding Institution,2018,39(12):37-43(in Chinese). doi: 10.12073/j.hjxb.2018390294
    [19] AYYAR H, EHTEMAM-HAGHIGHI S, KENT D, et al. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes[J]. Materials Science and Engineering: A,2017,705:385-393. doi: 10.1016/j.msea.2017.08.103
    [20] LONG F W, JIAGN Q W, XIAO L, et al. Compressive defor-mation behaviors of coarse-and ultrafine-grained pure titanium at different temperatures: A comparative study[J]. Materials Transactions,2011,52(8):1617-1622. doi: 10.2320/matertrans.M2011041
    [21] LI X P, VAN H J, KRUTH J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective[J]. Materials & Design,2017,116:352-358.
    [22] BANDYOPADHYAY A, DITTRICK S, GUALTIERI T, et al. Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,57:280-288. doi: 10.1016/j.jmbbm.2015.11.022
    [23] LONG Y, ZHANG H, WANG T, et al. High-strength Ti-6Al-4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering[J]. Materials Science and Engineering: A,2013,585:408-414. doi: 10.1016/j.msea.2013.07.078
    [24] SUI Q, LI P, WANG K, et al. Effect of build orientation on the corrosion behavior and mechanical properties of selective laser melted Ti-6Al-4V[J]. Metals,2019,9(9):976. doi: 10.3390/met9090976
    [25] ABBASZADEH M, VENTZKE V, NETO L, et al. Compression behaviour of wire + arc additive manufactured structures[J]. Metals,2021,11(6):877. doi: 10.3390/met11060877
    [26] 齐田宇, 杨建军, 赵佳伟, 等. 基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能[J]. 复合材料学报, 2022, 39(3):1055-1067.

    QI Tianyu, YANG Jianjun, ZHAO Jiawei, et al. Integrated manufacturing and performance study of continuous functionally graded materials structures based on multi-material 3D printing and constraint sacrifice layer[J]. Acta Materiae Compositae Sinica,2022,39(3):1055-1067(in Chinese).
    [27] 常海, 徐超, 胡小石. 累积叠轧纯Mg/ZK60镁合金层状金属复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1):178-185. doi: 10.13801/j.cnki.fhclxb.20180606.001

    CHANG Hai, XU Chao, HU Xiaoshi. Microstructure evolution and mechanical properties of Mg/ZK60 laminated composite fabricated by accumulated roll-bonding[J]. Acta Materiae Compositae Sinica,2019,36(1):178-185(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180606.001
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  523
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-24
  • 录用日期:  2022-06-29
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回