Processing math: 100%

碳点及其抗菌复合材料的研究进展

张文莉, 陈琳, 薛宝霞, 杨永珍, 张利, 刘旭光

张文莉, 陈琳, 薛宝霞, 等. 碳点及其抗菌复合材料的研究进展[J]. 复合材料学报, 2023, 40(7): 3738-3755. DOI: 10.13801/j.cnki.fhclxb.20230306.001
引用本文: 张文莉, 陈琳, 薛宝霞, 等. 碳点及其抗菌复合材料的研究进展[J]. 复合材料学报, 2023, 40(7): 3738-3755. DOI: 10.13801/j.cnki.fhclxb.20230306.001
ZHANG Wenli, CHEN Lin, XUE Baoxia, et al. Recent advances in carbon dots and their antibacterial composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3738-3755. DOI: 10.13801/j.cnki.fhclxb.20230306.001
Citation: ZHANG Wenli, CHEN Lin, XUE Baoxia, et al. Recent advances in carbon dots and their antibacterial composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3738-3755. DOI: 10.13801/j.cnki.fhclxb.20230306.001

碳点及其抗菌复合材料的研究进展

基金项目: 山西浙大新材料与化工研究院项目(2021SX-FR010;2021SX-TD013);山西省纳米药物可控缓释技术创新中心(202104010911026);山西省自然科学基金(202203021211159;20210302124200;202103021224355)
详细信息
    通讯作者:

    陈琳,博士,副教授,硕士生导师,研究方向为纳米碳功能材料 E-mail: chenlin01@tyut.edu.cn

    杨永珍,博士,教授,博士生导师,研究方向为纳米碳功能材料 E-mail:yyztyut@126.com

  • 中图分类号: TB34;TB332

Recent advances in carbon dots and their antibacterial composite materials

Funds: Shanxi-Zheda Institute of New Materials and Chemical Engineering (2021SX-FR010; 2021SX-TD013); Shanxi Technology Innovation Center for Controlled and Sustained Release of Nano-drugs (202104010911026); Natural Science Foundation of Shanxi Province (202203021211159; 20210302124200; 202103021224355)
  • 摘要: 抗菌剂是抑制细菌感染不可或缺的药物,传统抗菌剂抗生素的过度使用导致细菌的耐药性逐渐增强,严重威胁人类健康。碳点作为一种新型的纳米抗菌材料,具有抗菌能力强、原料来源广、细胞毒性低且生物相容性好等优点,将其与传统抗菌剂组合构建的新型纳米复合材料在抗菌领域表现出良好的应用前景。本文综述了碳点及其复合材料的抗菌机制与应用研究进展。首先,通过总结碳点的抗菌机制,系统分析了影响碳点抗菌性能的主要因素。其次,介绍碳点与传统抗菌剂相结合的新型纳米复合材料及其在抗菌领域的应用。最后,对碳点及其复合材料在抗菌应用研究中存在的问题进行总结并展望,为具有高效和长期抗菌性能的碳点复合材料的设计与合成提供借鉴经验。
    Abstract: Antimicrobials are indispensable drugs to inhibit bacterial infection. The overuse of conventional antibacterial (antibiotics) leads to the gradual enhancement of antimicrobial resistance of bacteria, which poses a serious threat to human health. As a new type of nano antibacterial material, carbon dots have the advantages of high anti antibacterial ability, wide range of raw materials, low cytotoxicity and good biocompatibility. Novel nano composite materials constructed by combining carbon dots with traditional antibacterial agents show great application prospects in the antibacterial field. This paper reviews the research progress on antibacterial mechanisms and applications of carbon dots and their composites. Firstly, the main factors affecting on the antibacterial performance of carbon dots are systematically analyzed by summarizing their antibacterial mechanisms. Secondly, the new nano composite materials combining carbon dots with traditional antibacterial agents and their applications in the antibacterial field are introduced. Finally, problems in the antibacterial application research of carbon dots and their composites are summarized and prospects are put forward, so as to provide reference experience for the design and synthesis of carbon dot composites with efficient and long-time antibacterial properties.
  • 细菌感染是患者死亡的主要原因之一[1],其常规的治疗方法是使用抗生素,但是过度使用可导致细菌产生耐药性,甚至出现超级细菌,增加治疗难度[2]。研究新型抗菌剂对抑制细菌感染至关重要。目前,传统的天然、有机和无机抗菌剂已取得长足的发展,但其抗菌效果等方面不尽如人意。如提取自动植物体内,富含多糖、多肽及糖肽聚合物类物质的天然抗菌剂尽管生物相容性好,但抗菌作用有限且杀菌率低[3];有机酸类、酚类、季铵盐类和苯并咪唑类等有机抗菌剂,杀菌速度快、能力强,但杀菌有效期短且安全性尚有争议[4]。以Ag等为活性组分的金属离子型[5]与以TiO2和ZnO等为代表的光催化型[6]无机抗菌剂的抗菌有效期长、毒性低、不产生耐药性,不足之处在于抗菌的迟效性且成本高[7]。因此,开发抗菌性能优异、毒性低、成本低且不产生耐药性的新型抗菌剂是抑制细菌感染的关键途径。

    碳点(Carbon dots,CDs)是由sp2或sp3型杂化碳或有机分子团簇构成的一种生物相容性良好的零维碳纳米材料。与天然和有机抗菌剂相比,CDs具有杀菌率高和毒性低的优势;与无机抗菌剂相比,CDs的制备原料广泛且成本低廉,因此在抗菌领域崭露头角[8]。CDs的抗菌性能主要体现在以下4个方面:(1) CDs的尺寸小(<10 nm),比表面积高,可以吸附在细菌表面,影响其与外界的物质和信息交流,产生间接毒性[9];(2)小尺寸CDs可以穿过细胞膜进入细胞内[10],与裸露的DNA结合[11],导致细菌失活;(3) CDs表面含有丰富的官能团,容易被修饰或与其他材料复合形成多功能纳米抗菌复合材料[12-13];(4) CDs不仅可以作为纳米酶或光敏剂而生成活性氧(Reaction oxygen species,ROS)破坏细菌结构,还可以将光能转换为热能导致细菌死亡[14-20],而且与金属氧化物光催化型抗菌剂相比,CDs甚至可以吸收从紫外可见光区到近红外光谱范围内的光,表现出更强的光动力或者光热抗菌效应。因此,CDs及其复合材料是一种极具潜力的抗菌剂,在食品包装、污水处理、抗菌敷料和纺织纤维等领域具有广阔的应用前景。

    本文综述了近年来CDs及其复合材料的抗菌研究进展。从CDs的抗菌机制出发,归纳总结影响其抗菌性能的主要因素,为设计和合成具有高抗菌性能的CDs材料提供理论借鉴。详细介绍基于CDs的抗菌复合材料,并阐述其在不同领域中的应用。最后,分析现阶段CDs及其复合材料在抗菌领域应用中遇到的挑战,为拓宽CDs的抗菌应用提供思路。

    CDs的抗菌作用主要由其和细菌的结构决定。CDs是由碳核和表面态组成的类球状纳米粒子[21](图1(a))。碳核作为CDs的骨架,主要由sp2和sp3杂化碳构成,表面态则由大量含氧/氮基官能团组成,如—OH、—NH2、—COOH和—C=O等[22]。目前,根据碳核微观结构的不同,将CDs分为石墨烯量子点(GQDs)、碳量子点(CQDs)、碳纳米点(CNDs)和碳化聚合物点(CPDs)4类[23]。GQDs以sp2杂化的石墨烯碎片为碳核,在表面边缘或层间缺陷内连接化学基团,形成单层或多层石墨结构[24];CQDs以结晶型的sp2杂化碳为碳核,外部连接化学基团[25];CNDs以非结晶型的sp3杂化碳为碳核,表面接枝官能团,石墨化程度较高,但不表现出晶格结构和聚合物特征[24];CPDs是以聚合物点(PDs)为碳核,各种官能团/聚合物链为表面钝化层构成的碳纳米颗粒。PDs是由有机小分子前驱体通过脱水缩合以及部分碳化形成的交联有机分子团簇[26]。不同类型CDs的抗菌作用不同,一方面,碳核决定CDs的尺寸,因此这4种碳核对应CDs的尺寸不同,表面活性各异,进而影响其对细菌的吸附及内化过程,抗菌效果亦不同;另一方面,CDs表面态中大量官能团决定其表面电荷,根据静电相互作用原理,CDs表面与细菌之间能否发生静电作用极大地影响抗菌能力,此外,与无机CDs(GQDs、CQDs和CNDs)相比,有机CPDs表面较长的有机聚合物链对细胞的穿透力也起到抗菌作用。因此,CDs的抗菌能力高度依赖于其尺寸、表面电荷和表面化学基团等参数。

    细菌是原核生物,没有细胞核,其结构主要由核质体、细胞质、细胞膜和细胞壁等组成[27](图1(b))。核质体存在于细胞质中,是近似于细胞核的闭合环状双链DNA分子,没有核膜;细胞膜在营养物的吸收、分泌物的释放、物质的代谢、能量的产生及细胞的生长分裂等多个基本生命环节中发挥着重要作用;细胞壁起到支撑和保护细菌的作用。在这些结构中,一旦某一部分被破坏都将导致细菌活性严重降低甚至死亡。

    图  1  (a) 碳点(CDs)的核壳结构;(b) 细菌的基本结构
    Figure  1.  (a) Nuclear-shell structure of carbon dots (CDs); (b) Basic structure of bacteria

    基于CDs与细菌的相互作用关系,研究发现CDs的抗菌性能第一是依靠其对细菌的吸附及扩散等作用破坏细菌结构;第二是通过ROS的氧化应激作用而使细菌失活,而ROS既可以由CDs纳米酶催化生成,也可以通过光诱导CDs产生;第三是利用CDs将光能转化为热能而杀死细菌。因此,CDs的抗菌机制可从直接接触型、氧化应激型和光热型3方面来解释[28]

    CDs由于具有尺寸小的特点,非常容易吸附于细菌表面,通过直接接触的方式产生抗菌作用。根据CDs与细菌的作用位点不同,可将直接接触型抗菌的途径分为以下3种:(1) CDs吸附于细菌表面,当浓度达到一定值后,将阻碍细菌与周围环境的物质和信息交流,遏制细菌生存,从而达到抑菌效果[29-30] (图2(a));(2) 吸附在细菌表面的CDs,通过静电或共价键等作用,损坏细菌的细胞壁和细胞膜的完整性,影响细菌的正常功能,在一定程度上起到杀菌作用[28, 31-32] (图2(b)),与此同时,细胞中大量内容物(如DNA和蛋白质等)从损坏的细胞壁处泄漏,导致细菌死亡[33] (图2(c));(3) 部分CDs可以穿过细胞壁(膜)渗透进入细胞内部[28, 34],以共价键与细菌内裸露的DNA和蛋白质结合,使DNA双螺旋结构展开且蛋白质发生变性[35],从而破坏细菌的正常生理功能,起到杀菌作用(图2(d)~2(f))。

    图  2  CDs抗菌机制示意图
    Figure  2.  Schematic diagram of antibacterial mechanisms of CDs
    ROS—Reaction oxygen species

    氧化应激是指在黑暗或光照条件下产生的ROS通过破坏细菌的核酸,导致脂质过氧化和使蛋白质失活来抑制细菌的生长。根据ROS的生成方式可将氧化应激型抗菌分成纳米酶催化型和光动力型两种。

    纳米酶催化型抗菌是指一些过渡金属离子与CDs掺杂,如Ag+、Fe3+、Zn2+等,使CDs具有酶样活性,即使在黑暗条件下,也能催化细胞内化学反应生成ROS,进而实现抗菌作用(图2(g))。

    过渡金属掺杂赋予CDs多种类纳米酶的性质,这类CDs被称为CDs纳米酶。PAN等[36]以壳聚糖(CS)、柠檬酸(CA)、乙二胺(EDA)和FeSO4·7 H2O为原料,通过水热法合成CS接枝的Fe掺杂CDs纳米酶(CS@Fe/CDs)。单独使用CS@Fe/CDs(50 μg·mL−1)时,金黄色葡萄球菌(Staphylococcus aureusS. aureus)和铜绿假单胞菌(Pseudomonas aeruginosaP. aeruginosa)的死亡率分别为~17.3%和~22.5%,而在H2O2存在时,二者几乎被完全杀死,这是由于CS@Fe/CDs可以通过芬顿反应(Fenton-like reaction)触发过氧化物酶样催化活性,催化H2O2产生•OH,提高抗菌活性。Liu等[37]合成的Cu掺杂CDs也具有优良的类过氧化氢酶和类过氧化物酶活性,可用于抑制初始细菌的黏附并根除随后产生的生物膜。

    光动力型抗菌主要依赖CDs在光照下通过I型(氢或电子转移)[16-19]或II型(能量转移)机制产生的ROS,其生成机制如图3所示。在光照条件下,CDs表面电子吸收光能(hv),从基态(S0)跃迁至第一电子激发单重态(S1),发生快速的电荷分离,形成电子-空穴对(e-h+)。这些电子不稳定,一部分通过辐射跃迁回到S0,发射荧光,另一部分发生自旋翻转,通过系间窜越到达第一电子激发三重态(T1)。随后,处于T1的电子一部分通过辐射跃迁回到S0,发射磷光,另一部分既可以通过能量转移(∆E),将激发三重态的氧气(3O2)转换成单线态氧(1O2),也可以通过氢或电子转移,与周围的物质(如H2O和O2等)反应产生ROS,如超氧离子(O2•−)和羟基自由基(•OH)等[16-19]。相关反应式如下[19]所示:

    CDs+hve+h+ (1)
    3O2+ΔE1O2 (2)
    O2+eO2 (3)
    H2O+h+H++OH (4)
    O2+H+O2H (5)
    H++O2HH2O2 (6)
    H2O2+eOH+OH (7)
    OH+h+OH (8)
    图  3  光诱导CDs产生活性氧(ROS)的原理图
    Figure  3.  Schematic diagram of the reaction oxygen species (ROS) generation by light-induced CDs
    hv—Light; VB—Valence band; CB—Conduction band; S0—Ground singlet state; S1—Excited singlet state; T1—Excited triplet state

    这些ROS可使细菌细胞壁、细胞膜和胞内物质(如DNA和蛋白质)受损,实现杀菌作用(图2(g)图2(h))。Ristic等[38]将CDs分别与S. aureus和大肠杆菌(Escherichia coliE. coli)共培养,发现与无光照时相比,光激发下培养基上细菌数量显著减少,说明CDs具有良好的光动力抗菌作用。

    光热抗菌是具有较高光热转换效率的材料,在外部光源的照射下,将光能转化为热能而杀死细菌,在细菌感染的治疗中受到了广泛关注。

    CDs具有较高的光热转换能力,在近红外光照射下,CDs表面电子吸收光能,经历从基态跃迁到激发态,然后再回到基态的过程。在此过程中,一方面以光辐射的形式释放能量,发射荧光或磷光(图3);另一方面,通过振动弛豫、系间窜越、内转换及外转换过程,以热能的形式释放能量,并迅速传递给周围环境,借助其周围环境快速升高的温度杀死细菌(图2(h))。Qie等[39]以邻苯二胺和D-谷氨酸为原料,采用溶剂热法合成了CDs(BAPTCDs)。在808 nm的光照下,空白组PBS溶液的温度没有明显变化,而200 μg·mL−1的BAPTCDs溶液的温度提高到70.3℃,说明BAPTCDs具有将近红外光能转化为热能的能力。抗菌结果表明,无光照时,BAPTCDs可导致80.33%的E. coli和89.27%的S. aureus死亡,而在808 nm的光照下,只有3.67%的E. coli存活,所有S. aureus因温度快速升高而死亡,抗菌效率超过99%。因此,CDs具有良好的光热抗菌作用。

    尽管CDs的抗菌机制分为直接接触型、氧化应激型(包括纳米酶催化型和光动力型)和光热型3种,但在其实际抗菌过程中,则由多种抗菌机制共同作用,如光热/光动力协同疗法被广泛应用于抗菌治疗[40]。进一步探索影响CDs抗菌性能的主要因素,针对性地优化其结构,可提高其抗菌性能,并拓宽其在抗菌领域中的应用。

    由CDs的抗菌机制可以发现,其抗菌性能主要受细菌种类、CDs的尺寸、表面电荷、表面功能化、元素组成及光学性质等因素的影响。

    自然界中细菌种类繁多,通过革兰氏染色法将众多细菌分为革兰氏阴性菌(如 P. aeruginosaE. coli)和革兰氏阳性菌(如枯草芽孢杆菌(Bacillus subtilisB. subtilis)和S. aureus两类[41-42]。细菌对革兰氏染色的不同反应是由于细胞壁的成分和结构不同而造成的,革兰氏阴性菌的细胞壁较薄且中间具有扩散孔,CDs极易扩散到细胞质中而将其消灭,而革兰氏阳性菌细胞壁上厚厚的肽聚糖层对细菌起保护作用,CDs难以破坏细菌细胞结构,杀菌作用较弱。张荣[43]以黑色素和盐酸甜菜碱为原料,采用一步水热法合成了CDs,当浓度为200 μg·mL−1时,其对E. coli(98%)的抑制率大于S. aureus(42%)。Lu等[44]以CA和姜黄素(Cur)为原料,通过水热法制备CDs,当浓度为375 μg·mL−1时,其对P. aeruginosaE. coli的抑制率为100%,而对S. aureusB. subtilis的抑制率仅为80%。可见,通常情况下CDs对革兰氏阴性菌的抗菌作用强于革兰氏阳性菌。

    从CDs的抗菌机制可以看出,直接接触型抗菌CDs渗透细菌细胞壁和细胞膜并扩散进入细菌内部发挥抗菌作用;光动力型抗菌CDs需要到达细菌各部位,而后通过光动力效应产生ROS,从内至外破坏细胞结构。CDs的尺寸直接影响跨膜扩散运动[45-47],小尺寸CDs不仅容易穿过细胞膜,而且在穿过细胞膜易位过程中形成的不可逆大孔增多,一方面易进入细菌内部与细胞内活性物质结合,另一方面加快细胞内容物泄露,导致细菌失活。Sun等[48]以葡萄糖酸氯己定为碳源制备葡萄糖酸氯己定CDs(CGCDs),并通过不同分子量截留(MWCO)再生纤维素透析袋将其分成3种不同粒径的CDs(图4(a)),分别为小粒径CGCDs(s-CGCDs:~2.0 nm)、中粒径CGCDs(m-CGCDs:~3.9 nm)和大粒径CGCDs(l-CGCDs:~5.3 nm)。结果表明,三者均可以杀死细菌,而且s-CGCDs对E. coliS. aureus的抗菌作用最强,最小抑菌浓度(Minimal inhibitory concentration,MIC)分别为75和50 μg·mL−1,这可能是由尺寸效应引起的CDs在细菌摄取和细胞膜中分布的差异导致的(图4(b)),因此小尺寸CDs的抗菌能力更强。

    图  4  (a) 通过不同分子量截留(MWCO)再生纤维素透析袋分离不同尺寸的CDs;(b) 小粒径葡萄糖酸氯己定CDs (CGCDs)(s-CGCDs)、中粒径CGCDs(m-CGCDs)和大粒径CGCDs (l-CGCDs)进入细菌细胞时的扩散能力示意图[48]
    Figure  4.  (a) Separating CDs of different sizes through different molecular weight cutoff (MWCO) regenerated cellulose dialysis bags; (b) Schematic diagram of the diffusion ability of small particle size chlorhexidine gluconate CDs (CGCDs) (s-CGCDs), middle particle size CGCDs (m-CGCDs), and large particle size CGCDs (l-CGCDs) into bacterial cells[48]

    细菌细胞壁的主要成分包括肽聚糖、磷壁酸和脂多糖等,通常带有负电荷[49];细胞膜中含有较高比例的阴离子成分,如磷脂酰甘油和心磷脂等,也呈负电性,所以细菌表面显负电性[22]。Wang等[50]通过实验测得S. aureusE. coli的Zeta电位分别为(−30.5±2.8) mV和(−16.2±1.6) mV。因此,带正电荷的CDs更易与细菌结合产生杀菌作用。

    Bing等[51]制备出3种不同电荷性质的CDs:将玻璃板放在燃烧的蜡烛上收集带负电荷的烛烟CDs;将NaCl分别与葡萄糖和精胺混合,制备中性电荷的葡萄糖CDs和正电荷的精胺CDs。将3种CDs分别与E. coli共培养12 h并进行活细菌计数,细菌活性分别为80%、100%和15%,说明带正电荷的精胺CDs更容易通过氢键和静电作用与细胞膜的肽聚糖、蛋白质和孔蛋白结合,协同破坏细胞膜的稳定性并抑制细胞膜的合成而杀菌。Wang等[50]通过酒石酸和间氨基苯酚制备了一系列可调电荷的阳离子CDs。当阳离子CDs的Zeta电位从(+4.5±0.42) mV升高到(+33.2±0.99) mV时,其对S. aureus的抗菌效果从95.6%增加到99.3%。进一步说明CDs的表面带电特性以及电荷量是影响CDs抗菌性能的关键因素之一。

    CDs表面含有—OH、—NH2、—COOH、—C=O等基团,对其进行功能化修饰是提升抗菌性能的有效方式。常用的CDs表面抗菌功能化改性试剂有铵类[52-55]、胺类[56-60]、月桂基甜菜碱(BS-12)[61]和氨苄青霉素(AMP)[62]等(表1)。Li等[56]以CA为碳源,通过热解法合成CQDs,而后利用亚精胺(Spd)对其表面功能化得到Spd-CQDs。选用不同类型的菌株进行抗菌测试,结果显示CQDs对这些细菌的MIC均大于50 μg·mL−1,而Spd-CQDs的MIC约为0.9 μg·mL−1,说明采用Spd对CDs表面功能化提升了CDs的抗菌能力。Mahat等[53]以来自棕榈油生物质的活性炭为碳源,合成了尺寸约为5~7 nm的负电荷CQDs,而后使用阳离子十六烷基三甲基溴化铵(CTAB)对其表面功能化改性,生成表面电荷为+12.8 mV的CTAB-CQDs,其对E. coli抑菌环直径为18 mm,远大于CQDs (10 mm),表现出更强的抗菌能力。值得注意的是,CDs在表面功能化改性的同时,也伴随着尺寸的增大,尺寸过大不利于CDs在细胞内的扩散,抗菌效果减弱。因此,在CDs表面功能化过程中,对其尺寸的控制很重要。

    表  1  表面功能化CDs的功能化试剂、制备方法、结构和抗菌性能
    Table  1.  Functional reagents, synthetic methods, structure, and antibacterial properties of surface-functionalized CDs
    Functional reagentsSynthetic
    methods
    Surface-functionalized CDsSize/nmZeta
    potential/mV
    BacteriaMIC/
    (μg·mL−1)
    Ref.
    AmmoniumGTAUltrasoundQ-CQDs4+10E. coli32[52]
    P. aeruginosa64
    S. aureus8
    MRSA8
    DDASolvothermalqCQDs3S. aureus25[54]
    MRSA25
    E. coli50
    P. aeruginosa50
    TAAMicrowaveCDs-C96.5+7.5E. coli7.9[55]
    S. aureus3.1
    AmineCadaverineMicrowaveCCQDs30-2E. coli9.7[57]
    S. aureus4.8
    HistamineMicrowaveHCQDs4.60-2E. coli6.9
    S. aureus6.9
    PutrescineMicrowavePCQDs40-2S. aureus3.4
    SpermineMicrowaveSCQDs80-2S. aureus6.5
    TTDDAMicrowaveNH2-FCDs+10.5E. coli>5000[58]
    EDASolvothermalEDA-CDs4-5B. subtilis64[59]
    E. coli64
    AGHydrothermalAG/CA-CDs4.3P. aeruginosa500[60]
    Quaternary ammonium compoundBS-12SolvothermalCDs-C124−11.6S. aureus8[61]
    B. subtilis12
    E. coli>200
    P. aeruginosa>200
    AntibioticAMPHydrothermalCDs-AMP44−8E. coli14[62]
    Notes: GTA—Glycidyl trimethyl ammonium chloride; DDA—Dimethyl diallyl ammonium chloride; TAA—Diazonium salts bearing tetraalkylammonium moieties; TTDDA—4,7,10-trioxa-1,13-tridecanediamine; EDA—2,2'-(ethylenedioxy) bis (ethylamine); AG—Amino guanidine; MIC—Minimal inhibitory concentration; BS-12—Lauryl betaine; AMP—Ampicillin; CA—Citric acid; MRSAMethicillin-resistant staphylococcus aureus; Q-CQDs, qCQDs—Quaternized carbon quantum dots; CDs-C9—CDs with different alkyl chains (C9); CCQDs, HCQDs, PCQDs, SCQDs—Cadaverine-, histamine-, putrescine-, spermine-CQDs; NH2-FCDs—Amine-coated CDs.
    下载: 导出CSV 
    | 显示表格

    杂原子掺杂可以改变CDs表面活性基团的种类和分布,进而影响CDs的抗菌效果[63-64]。根据不同类型的掺杂原子,将其分为金属原子掺杂和非金属原子掺杂两大类。

    (1) 银掺杂

    Ag本身抗菌性能优异[65],其抗菌原理是Ag+能够通过库仑力吸附并击穿细胞壁和细胞膜进入细胞内,致使DNA分子断裂和蛋白质变性,从而导致细菌灭亡。当菌体失去活性后,Ag+从菌体中游离出来,重新杀菌,抗菌效果持久,因此Ag掺杂是改善CDs抗菌性能最直接的一种方式[66-68]。Zhao等[66]以CA、聚乙烯亚胺(PEI)和AgNO3为原料,通过一步法制备Ag掺杂CDs (图5(a)),研究发现,其对S. aureus的MIC为15 μg·mL−1,而纯CDs的MIC为62.5 μg·mL−1,显然,Ag掺杂使CDs抗菌性能显著提高。

    图  5  Ag掺杂CDs (a) 和CDs/银纳米颗粒(Ag NPs)复合材料 (b) 的合成示意图[66]
    Figure  5.  Schematic diagram of the synthesis of Ag-doped CDs (a) and CDs/silver nanoparticles (Ag NPs) composites (b)[66]
    PEI—Polyethylenimine

    (2) 镧掺杂

    稀土元素镧(La)是亲氧元素,特征配位原子是氧原子,La3+通过配位键与CDs表面的氧原子结合,形成表面带正电荷的纳米粒子,促进其与细胞壁和细胞膜的静电作用,提高抗菌性能[69-71]。苏玉天[70]将腺苷酸二钠盐和LaCl3进行配位制备了La掺杂CDs。与未掺杂La的CDs相比,La掺杂CDs对E. coliS. aureus的繁殖有明显抑制作用,MIC仅为0.5 μg·mL−1

    (1)氮掺杂

    在众多杂原子中,氮原子(N)与碳原子(C)的原子半径相近,N更容易取代CDs原子晶格中的C。此外,与C相比,N具有更高的电负性,使得N掺杂位点处C拥有更高的正电荷密度。因此,N掺杂CDs易与细菌细胞膜产生静电作用,损伤细胞膜,降低细菌活性[11, 72-77]。Chatzimitakos等[11]以CA为原料合成CDs,并以CA和尿素为原料合成N掺杂CDs (N-CDs)。将同为400 μg·mL−1的CDs和N-CDs分别与细菌共培养4 h,发现CDs没有表现出显著的杀菌活性,只观察到可忽略的活力损失(<10%),而N-CDs的抑菌率为30%。当二者浓度均为500 μg·mL−1时,二者的抑菌率分别为44%和53%,说明N-CDs的抗菌作用更强。

    除了静电作用引起的抗菌之外,N掺杂CDs也可以在细菌内诱导产生ROS而抗菌。Wang等[73]以双季铵盐为碳氮源,采用水热法合成2.15 nm的正电荷N-CDs(+32 mV),其对E. coli、耐甲氧西林金黄色葡萄球菌(Methicillin-resistant staphylococcus aureusMRSA)、和S. aureus的MIC分别为8、4和2 μg·mL−1,具有高的抗菌活性。这主要是由于N-CDs表面的酰胺和胺基团分别是供电子基团和强供电子基团,可以与水和氧反应可以生成ROS进行杀菌,从而提高CDs的抗菌活性。

    (2)溴掺杂

    溴原子(Br)的存在有利于重原子效应(S0→T1和S1→T1)和T1态的磷光化(T1→S0) (图2),加快ROS的产生,提升CDs抗菌作用。Knoblauch等[78]将溴化碳纳米点(BrCND)作为ROS光敏剂来实现可控的抗菌效应。根据紫外线对细菌的生长抑制率发现:相同吸收强度下,BrCND对S. aureus (1%~6%)和E. coli (1%~20%)的生长抑制率大于等于未掺杂Br的CDs (CND) (1%~3%)。随着吸收强度增强,BrCND对细菌的生长抑制率逐渐增大,而CND几乎不变。这是由于BrCND容易实现三重态特性,从而通过电子转移或能量转移途径从分子氧中产生ROS,进而抑制或杀死细菌,使得BrCND在光照下对E. coliS. aureus的抗菌作用更强。

    除上述原子外,其他原子掺杂CDs的抗菌性能研究也受到关注,如铈原子(Ce)[79]、铜原子(Cu)[80]、锌原子(Zn)[81-82]、硼原子(B)[77]、硫原子(S)[74, 77, 83]和磷原子(P)掺杂[84]等。当然,也有多原子共掺杂CDs抗菌性能的研究,如N和S共掺杂[11]、N和Ag共掺杂[85]及Ag和S共掺杂[86]等(表2)。总之,杂原子掺杂已成为提升CDs抗菌性能的有效方式。

    表  2  杂原子掺杂CDs的原料、结构和抗菌性能
    Table  2.  Feedstock, structure, and antibacterial properties of heteroatom-doped CDs
    ClassificationDopantCarbon
    source
    Heteroatom-
    doped CDs
    Size/nmZeta
    potential/
    mV
    BacteriaAntibacterial
    properties
    Ref.
    Metal dopingAgAgNO3CA, PEI
    Ag-
    doped CDs
    1.8+25.0E. coliMIC: 50 μg·mL−1[66]
    S. aureusMIC: 15 μg·mL−1
    Cannabis sativaAg@CDsE. coliMIC: 42 μg·mL−1[67]
    S. aureusMIC: 42 μg·mL−1
    Dopamine, cysteineNSCDAg−44.0E. coliMIC: 8 μg·mL−1[68]
    NSCDAgAc−29.0E. coliMIC: 8 μg·mL−1
    CeCe(NO3)3CACe-CNDs2-4S. aureusMIC: 200 μg·mL−1[79]
    CuCu(CH3COO)2·H2OTeaCu-CDs0.9S. aureusMIC: 156 μg·mL−1[80]
    Zn(CH₃COO)₂ZnCA, EDAZn-CDs1.8S. aureusSR: 89%
    (Blue light: 40 min)
    [81]
    Non-metal dopingNDETAGlucoseNCQDs5+23.0S. aureusDIZ: 15.5 mm[72]
    MRSADIZ: 14.5 mm
    PolyvinylpyrrolidoneN-CQDs6.5−6.5E. coliMIC: 32 μg·mL−1[74]
    PVAmCACA∶ PVAm C-dots12.6+29.0E. coliMIC: 1.56 mg·mL−1[75]
    S. aureusMIC: 1.56 mg·mL−1
    B. subtilisMIC: 0.75 mg·mL−1
    Melamine, EDTAg-CNQDs2−36.0E. coliSR: 99%
    (100 μg·mL−1)
    [76]
    S. aureusSR: 90%
    (100 μg·mL−1)
    UreaGlucoseNGCD5.6−3.8E. coliMIC: 19 μg·mL−1[77]
    BH3BO3GlucoseBGCD6.2−18.0E. coliMIC: 156 μg·mL−1[77]
    SPoly (sodium-4-styrene sulfonate)S-CQDs6.5−47.2E. coliMIC: 32 μg·mL−1[74]
    (NH4)2S2O8GlucoseS-CDs6.9−5.5E. coliMIC: 156 μg·mL−1[77]
    Na2S2O8TurmericSGCD8.5+4.5E. coliDIZ: 14 mm[83]
    PH3PO4m-AminophenolP-
    doped CQDs
    3.4+23.1E. coliMIC: 1.23 mg·mL−1[84]
    S. aureusMIC: 1.44 mg·mL−1
    Co-dopingN, SUrea, thioureaCAN, S-
    doped CNDs
    E. coliSR: 68%
    (500 μg·mL−1)
    [11]
    Ag,
    N
    AgNO3, NH3∙H2OCAAg, N-CQDs5~9E. coliMIC: 250 μg·mL−1[85]
    S. aureusMIC: 200 μg·mL−1
    Ag,
    S
    MPA,
    AgNO3
    CAAg@S-GQDs28S. aureusMIC: 35 μg·mL−1[86]
    Notes:DETA—Diethylenetriamine; PVAm—Polyethyleneamine; EDTA—Ethylene diamine tetraacetic acid; MPA—3-mercaptopropionic acid; SR—Sterilization rate; DIZ—Diameters of inhibition zone; NSCDs—Heteroatom (N and S) doped CDs; CNDs—Carbon nanodots; CQDs—Carbon quantum dots; GCD—Glucose CDs; GQD—Graphene quantum dots.
    下载: 导出CSV 
    | 显示表格

    CDs的发光波长范围为从紫外光到可见光甚至近红外光,而且不同种类CDs的光学性质存在差异,使光动力产生的ROS数量及光热转换效率差异较大,进而导致其抗菌能力不同。相较于红光和近红外CDs而言,紫外发光CDs和蓝光CDs在抗菌方面表现更佳。

    Liu等[87]采用溶剂热法合成的近红外CDs在15 min内可以将97.7%的E. coil杀死,而Lu等[44]合成的发射波长为486 nm的蓝光CDs对E. coil的杀灭效率可达100%,抗菌活性高于近红外CDs。与红光和近红外CDs相比,蓝光CDs具有较高的发射能量,一方面将导致更多电子发生大量能量转移,快速吸收周围的3O2并产生1O2;另一方面CDs更高的热转换效率使其周围温度快速升高,杀菌能力增强。

    总的来说,CDs的尺寸、表面电荷、表面功能化、元素组成及光学性质5个因素并非是影响其抗菌性能的单一因素,而是五者之间相互制约、共同作用。如表面官能团的修饰同时增加CDs的尺寸,表面元素的掺杂影响其表面电荷变化等。

    传统抗菌剂,如银系抗菌剂、氧化物光催化型抗菌剂和抗生素等,虽然其抗菌效果较好,但存在稳定性低、分散性差、毒性高或者易产生耐药性等缺点,极大地限制了其在抗菌领域的应用。如果将具有高稳定性、良好水溶性和优异生物相容性的CDs与这些传统抗菌剂复合,既可以规避传统抗菌剂的缺点,又能发挥CDs和抗菌剂的协同抗菌作用,进而显著提升CDs复合材料的抗菌性能。已见报道的CDs复合材料主要有CDs与银纳米颗粒(Ag NPs)、金属氧化物、抗生素和过渡金属复合材料等。

    表  3  CDs复合材料的抗菌性能
    Table  3.  Antibacterial properties of CDs composites
    ClassificationAntimicrobialCompositeMIC/(μg·mL−1); SR/%; DIZ/mmRef.
    E. coliS. aureus
    CDs/antibioticRUTCDs-RUT180 μg·mL−1 (Dark)170 μg·mL−1 (Dark)[105]
    150 μg·mL−1 (Light)100 μg·mL−1 (Light)
    CDs/native compoundCSN-doped C-dot (CS)90.00% (100 μL)92.00% (100 μL)[109]
    N, S doped C-dot (CS)41.53% (100 μL)48.54% (100 μL)
    CurCQDs/Cur>99.9%[110]
    CDs/inorganic compoundCDs/Ag NPsAg NPsCDs/Ag NPs20 μg·mL−15 μg·mL−1[66]
    Ag NPs/CDs40 μg·mL−120 μg·mL−1[90]
    ACMCD-Ag10 μg·mL−15 μg·mL−1[92]
    CDs/Ag NPs12-13 mm13-15 mm[93]
    CQDs/Ag NPs10.88 mm11.22 mm[94]
    Ag NPs-ACNPs63.64%93.49%[95]
    Ag-GQDs25 μg·mL−1[96]
    CDs/metallic oxideZnOZnO@CQDs6 mg·mL−18 mg·mL−1[102]
    CDs/peroxideH2O2H2O2/CDs88%
    (0.59 mM H2O2/8 μg·mL−1 CDs)
    [59]
    CDs/FeFeFe-CDs99.85%99.68%[106]
    CDs/organic compoundCDs/dyeMBCDs/MB100%(1 μg·mL−1 MB/5 μg·mL−1 CDs)[107]
    TBCDs/TB100%(1 μg·mL−1 TB/
    5 μg·mL−1 CDs)
    BODIPYBODIPY@n-CDs256 μg·mL−1[108]
    BODIPY@p-CDs128 μg·mL−1
    CDs/polymerPVAN-doped C-dot (PVA)47.53% (100 μL)36.49% (100 μL)[109]
    N, S doped C-dot (PVA)56.47% (100 μL)46.51% (100 μL)
    PSN-doped C-dot (PS)70.50% (100 μL)39.86% (100 μL)
    N, S doped C-dot (PS)61.65% (100 μL)39.41% (100 μL)
    Notes:RUT—Rutin; CS—Chitosan; Cur—Curcumin; MB—Methylene blue; TB—Toluidine blue; BODIPY—Fluoroborondipyrrole; PVA—Polyvinyl alcohol; PS—Polysulfonatestyrene; ACMCD—Amphiphilic cow milk-derived CDs; ACNPs—Activated carbon nanoparticle.
    下载: 导出CSV 
    | 显示表格

    Ag NPs是一种抗菌性能优异的抗菌剂,主要通过释放Ag+和产生ROS发挥抗菌作用[88-89],但是,Ag NPs容易团聚且易因氧化而失去抗菌能力。将CDs与Ag NPs结合制备的CDs/Ag NPs复合材料,既能利用CDs的高分散性和高稳定性解决Ag NPs团聚和氧化的问题,又能实现二者的协同抗菌作用[66, 90-96]

    Zhao等[66]以PEI和CA为碳源制备CDs,而后将甲醛作为还原剂,AgNO3为银源,在CDs表面还原负载Ag NPs,得到CDs/Ag NPs复合材料(图5(b))。抗菌实验发现,其对S. aureus的MIC仅为5 μg·mL−1,而CDs和Ag NPs的MIC分别为62.5和15~20 μg·mL−1,表明复合材料中CDs和Ag NPs具有协同抗菌作用。Liu等[91]首先以CA和β-巯基乙胺为原料,通过水热法合成硫氮共掺杂CDs (S, N-CQDs),之后将其负载于Ag NPs表面,合成Ag NPs@S, N-CQDs复合材料,其尺寸约为2~7 nm,表面电荷为+18 mV,对S. aureusMRSA的MIC均为63 μg·mL−1,对E. coli和白色念珠菌的MIC均为32 μg·mL−1,而且相同浓度时,Ag NPs@S, N-CQDs对4种细菌的抑制率总大于S, N-CQDs,由此可见,CDs与Ag NPs复合可以充分发挥Ag NPs与CDs之间的协同抗菌作用,从而产生单一CDs无法比拟的抗菌性能。

    常见的金属氧化物光催化型抗菌剂,如氧化锌(ZnO)和TiO2等,在紫外光照射下抗菌性能较好,但是其对可见光的响应范围较窄,光生电子和空穴容易复合,限制了ROS的生成效率[97-99]。将金属氧化物光催化型抗菌剂与宽吸收光谱的CDs复合后,可以拓宽金属氧化物的光吸收范围,增强吸收能力,抑制激发电子的复合,进一步提升其抗菌效果[100-101]

    Gao等[102]首先以葡萄糖与聚乙二醇为原料制备CQDs,然后将ZnO溶解在预先制备的CQDs溶液中,通过水热法制备ZnO@CQDs纳米复合材料。在可见光下,ZnO对S. aureusE. coli的MIC分别为12和14 mg·mL−1,而ZnO@CQDs对两种细菌的MIC分别为6和8 mg·mL−1。一方面是由于CQDs的上转换特性使可见光转换为ZnO可利用的短波长光,拓宽ZnO的光吸收范围,产生更多的电子和空穴,其中光生空穴吸收空气中的水和氧气,转化为·OH等强活性物质,增强抗菌性能;另一方面,CQDs作为电子受体可以捕获光生电子,抑制了光生电子和空穴的复合,得到电子的CQDs与ZnO表面的氧发生反应生成O2•−,提高ROS生成效率,从而增强抗菌性能。

    Yan等[103]首先采用电化学法制备CQDs,然后将TiO2和CQDs加入蒸馏水和乙醇混合溶液中,通过水热法制备了CQDs-TiO2复合材料,并将其对E. coliS. aureus的抗菌活性进行了系统评价。结果表明,浓度为1 mg·mL−1的CQDs在可见光下培养24 h后,对E. coliS. aureus的抑菌率均小于10%;相同浓度TiO2的抑菌率均小于30%;而同浓度CQDs-TiO2的抑菌率分别高达90.9%和92.8%。此外,与TiO2相比,CQDs-TiO2表现出更高的可持续降解细菌能力。一方面是因为CQDs-TiO2对可见光的吸收强于纯CQDs和TiO2,所以光诱导产生的ROS更多,细菌内有机物的降解更快,进而导致细菌快速解体;另一方面是由于纯TiO2容易聚集,与细菌的接触减少,而CQDs的加入不仅可以防止纯TiO2团聚,还可以将TiO2带到细胞中发挥抗菌作用。

    通常抗生素的抗菌性能高于CDs,但是过度使用容易引起细菌耐药性,将分散性较高的CDs作为抗生素的载体,将减少其用量并提升CDs/抗生素复合材料的抗菌活性。Thakur等[104]以阿拉伯树胶为原料合成CDs,并将其作为环丙沙星的载体合成Cipro@CDs。研究表明,CDs对B. subtilisP. aeruginosaE. coliS. aureus的抑菌环平均直径分别为1.2、1.3、1.1和1.4 mm,裸环丙沙星分别为2.5、3.1、2.6和2.7 mm,Cipro@CDs分别为3.1、3.3、2.5和2.5 mm。虽然,裸露的环丙沙星与Cipro@CDs抗菌活性相近,但是与游离CDs相比,Cipro@CDs表现出增强的抗菌活性。Tejwan等[105]以红参根提取物为碳源,通过微波辅助法合成了尺寸在1~4 nm之间的水溶性CDs,而后以该CDs为天然抗生素黄酮芦丁药物(RUT)的载体,评价其抗菌性能。结果表明,无论有无光照,与单一的CDs或者RUT相比,CDs-RUT均具有增强的抗菌活性。

    过渡金属掺杂CDs合成的CDs纳米酶具有多种类纳米酶的性质[36-37, 106],如类过氧化物酶、类氧化物酶,从而产生羟基自由基和超氧阴离子等多种ROS用于抗菌。

    Liu等[106]以乙二胺四乙酸单钠铁盐为原料,通过热解法合成了Fe掺杂CDs (Fe-CDs),其在继承了CDs优异的光热转换性能(35.11%)的同时,Fe作为过渡金属,也赋予了其类过氧化物酶活性。体外抗菌实验表明,局部加热与类过氧化物酶活性相结合,导致Fe-CDs对S. aureusE. coli的抗菌率分别高达99.68%和99.85%。此外,Fe掺杂和近红外激光照射有助于成纤维细胞增殖、新血管形成和胶原沉积,从而使Fe-CDs介导的细菌感染快速痊愈。更重要的是,超小尺寸的Fe-CDs表现出良好的生物相容性,不会对正常组织造成实质性的炎症或病理损伤。

    此外,CDs与其他抗菌剂组成的复合材料,如染料[107-108]、CS[109]、聚乙烯醇(PVA)[109]、聚苯乙烯(PS)[109]、Cur[110]和H2O2[59]等,也表现出良好的抗菌效果(表3),展现出基于CDs的抗菌复合物作为新型抗菌材料的广阔前景。

    利用CDs抗菌复合材料优异的生物相容性、稳定性、分散性及抗菌性能等优势,开发基于CDs抗菌复合材料的薄膜[92, 111-113]、敷料[114-115]和纤维[116]等制品,在食品包装、污水处理、抗菌敷料和纺织纤维等领域具有广阔的应用前景。

    在薄膜材料加工工程中,添加CDs作为抗菌助剂,能得到兼具透光性、柔韧性和抗菌等特性良好的抗菌薄膜,可应用于食品包装领域。

    Han等[92]以两亲性牛奶衍生CDs (ACMCD)为还原剂和模板,Ag NPs为载体,采用溶剂流延法制备了ACMCD-Ag/聚甲基丙烯酸甲酯纳米复合抗菌薄膜。随着ACMCD-Ag掺杂水平的增加,薄膜的透明度逐渐降低(图6(a)),但是该薄膜对E. coliS. aureus的杀菌率高达100%,抗菌性能优异,而且当掺杂量为2wt%时,其柔韧性较好(图6(b))。

    Ezati等[111]将葡萄糖CDs (GCD)和氮功能化CDs (NGCD)分别添加到纤维素纳米纤维(CNF)的成膜溶液中,使用溶液流延法制备CNF基复合薄膜。抗菌研究表明,CNF/NGCD薄膜对单增李斯特菌、E. coli和黄曲霉的抗菌活性最强,CNF/GCD薄膜次之,CNF薄膜无抗菌性能,而且当柑橘和草莓果采用CNF基复合溶液包衣时,抑制了水果表面真菌的生长,分别延长了10天和2天以上的保质期(图7(a)7(b))。MTT测试表明,与细胞共孵育72 h后,CNF、CNF/GCD和CNF/NGCD薄膜的细胞活力分别下降至93.2%、87.2%和84.2%,细胞毒性均较低。因此,鉴于CDs抗菌复合材料在保存或延缓食品腐坏方面效果显著和其较低的细胞毒性,可将其用于食品包装。

    图  6  (a) 薄膜透明度随两亲性牛奶衍生CDs (ACMCD)负载的银纳米颗粒(ACMCD-Ag)的掺杂水平而变化;(b) ACMCD-Ag/聚甲基丙烯酸甲酯(ACMCD-Ag/PMMA)薄膜的照片(掺杂量2wt%)[92]
    Figure  6.  (a) Transparency of thin films as a function of amphipathy cow milk-derived CDs (ACMCD) supported silver nanoparticles (ACMCD-Ag) doping level; (b) Photograph of the ACMCD-Ag/polymethylmethacrylate (ACMCD-Ag/PMMA) thin film product (Doping amount 2wt%)[92]
    图  7  纤维素纳米纤维(CNF)基包衣的橘子(a)和草莓(b)在储存时的外观变化[111]
    Figure  7.  Appearance change of tangerines (a) and strawberries (b) coated with the cellulose nanofiber (CNF)-based films during storage[111]
    GCD—Glucose CDs; NGCD—N-functionalized CDs

    正向渗透膜工艺是污水处理中常用的一种膜分离技术[112-113],然而这项工艺的推广受到膜污染的限制。在膜中加入CDs不仅改善膜的表面性能,还赋予其一定的抗菌能力,提高膜处理效率[117]

    Mahat等[113]将以油棕榈生物质为碳源合成的CQDs嵌入具有选择性的聚砜层(PSF)中,开发出一种用于正向渗透的复合薄膜(CQDs-PSF)。该膜具有亲水且多孔的特性,水通量明显提高,CQDs-PSF(1.0%)膜的水通量可达226 L/(m2·h),反向盐通量为59.38 mol/(m2·h),平均表面粗糙度和均方根分别降为1.87和2.56 nm,表明CQDs的存在使PSF膜的形态更平滑,在污水处理过程中不易结垢,具有更好的防污能力。此外,抗菌实验表明CQDs-PSF膜对E. coli具有良好的抗菌能力。总之,CQDs提高了CQDs-PSF膜的水通量、抗污能力及抗菌性能,使得其在废水回用、污水净化及海水淡化中的应用引起了广泛关注。

    细菌感染是伤口愈合过程中最严重的问题之一,不仅给患者造成严重的疼痛,还会引起伤口发炎,延长愈合时间。水凝胶敷料是由弹性的聚合水凝胶、合成橡胶及黏性物混合加工而成的敷料,具有对生理环境敏感度高、亲水性好、类似软组织的含水量和柔韧性好等特性,但是,水凝胶本身并不具备抗菌作用,将CDs与水凝胶复合制备的水凝胶抗菌敷料可以有效阻隔细菌,防止创面感染,加速伤口愈合时间,在伤口愈合及皮损愈合方面起着重要的作用[114]

    Yang等[115]以ε-聚(L-赖氨酸)为原料制备CDs (PL-CD),将其作为节点,通过席夫碱连接氧化葡聚糖(ODA),构建PL-CD@ODA水凝胶网络,其SEM图像如图8(a)所示,PL-CD@ODA呈现多孔网络结构,具有透气作用,而且该凝胶表面大量的—NH2可以迅速与带负电的细胞膜发生静电作用,破坏细菌的正常代谢,从而杀死细菌,起到防止厌氧菌繁殖的作用。PL-CD@ODA水凝胶还具有非凡的自修复性能,如无需外部干预,37 ℃下,PL-CD@ODA水凝胶碎片在1 h内可以恢复成小圆片(图8(b)),这种自愈特性使其能够承受损伤并延长使用时间,降低继发感染的风险和成本。此外,PL-CD@ODA水凝胶具有剪切稀释性能,可通过22号针头顺利挤出而不会阻塞(图8(c)),表明其具有良好的可注射性,能够适应任何形状的伤口。

    图  8  (a) ε-聚(L-赖氨酸) CDs@氧化葡聚糖(PL-CD@ODA)水凝胶的SEM图像;(b) PL-CD@ODA水凝胶被压碎和愈合的照片;(c) PL-CD@ODA水凝胶的可注射性[115]
    Figure  8.  (a) SEM images of ε-poly(L-lysine) CD@oxidized dextran (PL-CD@ODA) hydrogels; (b) Photographs of PL-CD@ODA hydrogel being crushed and healing; (c) Injectability of PL-CD@ODA hydrogel[115]

    抗菌纤维可以广泛应用于床品、睡衣、毛巾和运动服等方面,特别是老年、孕产妇及婴幼儿服装。将添加CDs的纤维制成织物,可以抵抗细菌在衣物上的附着,使人远离病菌的侵扰。

    Nie等[116]采用静电纺丝技术将CQDs嵌入聚丙烯腈纳米纤维(PAN-CQDs NFs)。抗菌结果表明,在黑暗条件下培养60 min,之后光照90 min,PAN-CQDs-2.5% NFs使E. coli细菌失活6 log,使S. aureus失活2.2 log,抗菌性能优异,一方面是由于CQDs具有突出的光稳定性和高抗菌光动力失活性;另一方面,PAN NFs较大的比表面积为细菌提供了更多的附着空间。体外细胞毒性测试发现,与PAN-CQDs-2.5% NFs共培养24 h后,小鼠上皮样成纤维细胞(L929细胞)的细胞存活率仍>95%,这表明PAN-CQDs NFs具有低的细胞毒性和良好的生物相容性。此外,以PAN-NFs为载体的CQDs在细菌失活后可循环使用,极大降低成本,在实际应用中极具优势。

    综上所述,CDs复合材料在抗菌应用中极具优势。然而,受到CDs合成工艺和产量的影响,基于这些复合材料的产品目前尚处于基础研究阶段,距离工业化应用还有一段距离。同时,CDs引入后可能造成复合材料力学性能下降和产品颜色加深等问题,直接导致了污水处理薄膜的应用周期缩短、食品包装盒视觉效果模糊及敷料和纤维织物不美观等问题。若要实现其在工业和生物医学产品中的应用,复合材料力学性能的提升及产品颜色的调控等方面也是未来研究的改进方向。

    以应用于抗菌领域的碳点(CDs)及其复合材料为对象,综述其最新的研究进展。CDs作为一种新型抗菌材料,可通过直接接触型、氧化应激型或光动力型3种作用机制实现抗菌。影响CDs抗菌性能的主要因素较多,包括细菌种类、CDs尺寸、表面电荷分布、表面功能化、元素组成和光学性质等。将CDs分别与银纳米颗粒(Ag NPs)、ZnO、TiO2和抗生素等传统抗菌剂及过渡金属复合而构建的新型CDs复合材料具有比单一CDs更好的抗菌效果,对拓展其在食品加工、生物医用和纺织服装等领域的应用具有重要意义。总的来说,CDs作为一种新型的碳纳米抗菌材料发展前景广阔,但仍然有一些问题需要解决。

    (1) 建立高抗菌性能CDs的可控合成工艺

    目前,限制CDs及其复合材料在抗菌领域应用的主要问题是,制备机制不明确且产率低。由于CDs的抗菌性能受其自身尺寸和表面电荷等多方面的影响,通过优选碳源和掺杂剂的种类,建立可控的合成工艺,精确调控CDs的尺寸、表面电荷分布及杂原子的含量等因素,提升CDs的合成产率,将是推广CDs抗菌应用的重要途径。

    (2) 设计新型高效CDs抗菌复合材料

    高效的抗菌性能得益于CDs与不同功能材料的复合。除了Ag NPs和金属氧化物等传统的抗菌材料,新型纳米材料的出现正在不断丰富CDs及其复合材料的抗菌性能。因此,探索纳米材料的种类和含量、制备方法和条件对复合材料的组成和结构的影响规律,揭示CDs复合材料的尺寸、形貌、元素组成和表面电荷与抗菌性能之间的内在关系,是设计新型高效CDs抗菌复合材料的关键。

    (3) 开发CDs抗菌复合材料新型抗菌产品

    鉴于CDs及其复合材料低毒性、良好的生物相容性和优异的抗菌性能,可以拓展其在不同抗菌产品中的应用,如长期留置于人体内的器官或组织修复材料、短期留置人体内的辅助医疗器械及整容修复材料等。以导尿管为例,通过表面或本体改性的方式,在导尿管中加入CDs及其复合材料,进一步提升导尿管的抗菌性能,实现抗菌长效性,为预防导尿管相关性感染等临床疾病提供新思路。

    (4) 设计具有纳米酶活性的新型CDs复合材料

    具有纳米酶活性的CDs复合材料,能够产生羟基自由基和超氧阴离子等多种活性氧(ROS),可以作为替代抗生素的新型抗菌药物。然而,该领域的研究仍处于初期阶段,需要继续深入研究,包括具有纳米酶活性的CDs及其复合材料的结构和ROS生成机制之间的关系、不同种类CDs纳米酶的复合材料开发、抗菌机制的建立及其抗菌性能等。

  • 图  1   (a) 碳点(CDs)的核壳结构;(b) 细菌的基本结构

    Figure  1.   (a) Nuclear-shell structure of carbon dots (CDs); (b) Basic structure of bacteria

    图  2   CDs抗菌机制示意图

    Figure  2.   Schematic diagram of antibacterial mechanisms of CDs

    ROS—Reaction oxygen species

    图  3   光诱导CDs产生活性氧(ROS)的原理图

    Figure  3.   Schematic diagram of the reaction oxygen species (ROS) generation by light-induced CDs

    hv—Light; VB—Valence band; CB—Conduction band; S0—Ground singlet state; S1—Excited singlet state; T1—Excited triplet state

    图  4   (a) 通过不同分子量截留(MWCO)再生纤维素透析袋分离不同尺寸的CDs;(b) 小粒径葡萄糖酸氯己定CDs (CGCDs)(s-CGCDs)、中粒径CGCDs(m-CGCDs)和大粒径CGCDs (l-CGCDs)进入细菌细胞时的扩散能力示意图[48]

    Figure  4.   (a) Separating CDs of different sizes through different molecular weight cutoff (MWCO) regenerated cellulose dialysis bags; (b) Schematic diagram of the diffusion ability of small particle size chlorhexidine gluconate CDs (CGCDs) (s-CGCDs), middle particle size CGCDs (m-CGCDs), and large particle size CGCDs (l-CGCDs) into bacterial cells[48]

    图  5   Ag掺杂CDs (a) 和CDs/银纳米颗粒(Ag NPs)复合材料 (b) 的合成示意图[66]

    Figure  5.   Schematic diagram of the synthesis of Ag-doped CDs (a) and CDs/silver nanoparticles (Ag NPs) composites (b)[66]

    PEI—Polyethylenimine

    图  6   (a) 薄膜透明度随两亲性牛奶衍生CDs (ACMCD)负载的银纳米颗粒(ACMCD-Ag)的掺杂水平而变化;(b) ACMCD-Ag/聚甲基丙烯酸甲酯(ACMCD-Ag/PMMA)薄膜的照片(掺杂量2wt%)[92]

    Figure  6.   (a) Transparency of thin films as a function of amphipathy cow milk-derived CDs (ACMCD) supported silver nanoparticles (ACMCD-Ag) doping level; (b) Photograph of the ACMCD-Ag/polymethylmethacrylate (ACMCD-Ag/PMMA) thin film product (Doping amount 2wt%)[92]

    图  7   纤维素纳米纤维(CNF)基包衣的橘子(a)和草莓(b)在储存时的外观变化[111]

    Figure  7.   Appearance change of tangerines (a) and strawberries (b) coated with the cellulose nanofiber (CNF)-based films during storage[111]

    GCD—Glucose CDs; NGCD—N-functionalized CDs

    图  8   (a) ε-聚(L-赖氨酸) CDs@氧化葡聚糖(PL-CD@ODA)水凝胶的SEM图像;(b) PL-CD@ODA水凝胶被压碎和愈合的照片;(c) PL-CD@ODA水凝胶的可注射性[115]

    Figure  8.   (a) SEM images of ε-poly(L-lysine) CD@oxidized dextran (PL-CD@ODA) hydrogels; (b) Photographs of PL-CD@ODA hydrogel being crushed and healing; (c) Injectability of PL-CD@ODA hydrogel[115]

    表  1   表面功能化CDs的功能化试剂、制备方法、结构和抗菌性能

    Table  1   Functional reagents, synthetic methods, structure, and antibacterial properties of surface-functionalized CDs

    Functional reagentsSynthetic
    methods
    Surface-functionalized CDsSize/nmZeta
    potential/mV
    BacteriaMIC/
    (μg·mL−1)
    Ref.
    AmmoniumGTAUltrasoundQ-CQDs4+10E. coli32[52]
    P. aeruginosa64
    S. aureus8
    MRSA8
    DDASolvothermalqCQDs3S. aureus25[54]
    MRSA25
    E. coli50
    P. aeruginosa50
    TAAMicrowaveCDs-C96.5+7.5E. coli7.9[55]
    S. aureus3.1
    AmineCadaverineMicrowaveCCQDs30-2E. coli9.7[57]
    S. aureus4.8
    HistamineMicrowaveHCQDs4.60-2E. coli6.9
    S. aureus6.9
    PutrescineMicrowavePCQDs40-2S. aureus3.4
    SpermineMicrowaveSCQDs80-2S. aureus6.5
    TTDDAMicrowaveNH2-FCDs+10.5E. coli>5000[58]
    EDASolvothermalEDA-CDs4-5B. subtilis64[59]
    E. coli64
    AGHydrothermalAG/CA-CDs4.3P. aeruginosa500[60]
    Quaternary ammonium compoundBS-12SolvothermalCDs-C124−11.6S. aureus8[61]
    B. subtilis12
    E. coli>200
    P. aeruginosa>200
    AntibioticAMPHydrothermalCDs-AMP44−8E. coli14[62]
    Notes: GTA—Glycidyl trimethyl ammonium chloride; DDA—Dimethyl diallyl ammonium chloride; TAA—Diazonium salts bearing tetraalkylammonium moieties; TTDDA—4,7,10-trioxa-1,13-tridecanediamine; EDA—2,2'-(ethylenedioxy) bis (ethylamine); AG—Amino guanidine; MIC—Minimal inhibitory concentration; BS-12—Lauryl betaine; AMP—Ampicillin; CA—Citric acid; MRSAMethicillin-resistant staphylococcus aureus; Q-CQDs, qCQDs—Quaternized carbon quantum dots; CDs-C9—CDs with different alkyl chains (C9); CCQDs, HCQDs, PCQDs, SCQDs—Cadaverine-, histamine-, putrescine-, spermine-CQDs; NH2-FCDs—Amine-coated CDs.
    下载: 导出CSV

    表  2   杂原子掺杂CDs的原料、结构和抗菌性能

    Table  2   Feedstock, structure, and antibacterial properties of heteroatom-doped CDs

    ClassificationDopantCarbon
    source
    Heteroatom-
    doped CDs
    Size/nmZeta
    potential/
    mV
    BacteriaAntibacterial
    properties
    Ref.
    Metal dopingAgAgNO3CA, PEI
    Ag-
    doped CDs
    1.8+25.0E. coliMIC: 50 μg·mL−1[66]
    S. aureusMIC: 15 μg·mL−1
    Cannabis sativaAg@CDsE. coliMIC: 42 μg·mL−1[67]
    S. aureusMIC: 42 μg·mL−1
    Dopamine, cysteineNSCDAg−44.0E. coliMIC: 8 μg·mL−1[68]
    NSCDAgAc−29.0E. coliMIC: 8 μg·mL−1
    CeCe(NO3)3CACe-CNDs2-4S. aureusMIC: 200 μg·mL−1[79]
    CuCu(CH3COO)2·H2OTeaCu-CDs0.9S. aureusMIC: 156 μg·mL−1[80]
    Zn(CH₃COO)₂ZnCA, EDAZn-CDs1.8S. aureusSR: 89%
    (Blue light: 40 min)
    [81]
    Non-metal dopingNDETAGlucoseNCQDs5+23.0S. aureusDIZ: 15.5 mm[72]
    MRSADIZ: 14.5 mm
    PolyvinylpyrrolidoneN-CQDs6.5−6.5E. coliMIC: 32 μg·mL−1[74]
    PVAmCACA∶ PVAm C-dots12.6+29.0E. coliMIC: 1.56 mg·mL−1[75]
    S. aureusMIC: 1.56 mg·mL−1
    B. subtilisMIC: 0.75 mg·mL−1
    Melamine, EDTAg-CNQDs2−36.0E. coliSR: 99%
    (100 μg·mL−1)
    [76]
    S. aureusSR: 90%
    (100 μg·mL−1)
    UreaGlucoseNGCD5.6−3.8E. coliMIC: 19 μg·mL−1[77]
    BH3BO3GlucoseBGCD6.2−18.0E. coliMIC: 156 μg·mL−1[77]
    SPoly (sodium-4-styrene sulfonate)S-CQDs6.5−47.2E. coliMIC: 32 μg·mL−1[74]
    (NH4)2S2O8GlucoseS-CDs6.9−5.5E. coliMIC: 156 μg·mL−1[77]
    Na2S2O8TurmericSGCD8.5+4.5E. coliDIZ: 14 mm[83]
    PH3PO4m-AminophenolP-
    doped CQDs
    3.4+23.1E. coliMIC: 1.23 mg·mL−1[84]
    S. aureusMIC: 1.44 mg·mL−1
    Co-dopingN, SUrea, thioureaCAN, S-
    doped CNDs
    E. coliSR: 68%
    (500 μg·mL−1)
    [11]
    Ag,
    N
    AgNO3, NH3∙H2OCAAg, N-CQDs5~9E. coliMIC: 250 μg·mL−1[85]
    S. aureusMIC: 200 μg·mL−1
    Ag,
    S
    MPA,
    AgNO3
    CAAg@S-GQDs28S. aureusMIC: 35 μg·mL−1[86]
    Notes:DETA—Diethylenetriamine; PVAm—Polyethyleneamine; EDTA—Ethylene diamine tetraacetic acid; MPA—3-mercaptopropionic acid; SR—Sterilization rate; DIZ—Diameters of inhibition zone; NSCDs—Heteroatom (N and S) doped CDs; CNDs—Carbon nanodots; CQDs—Carbon quantum dots; GCD—Glucose CDs; GQD—Graphene quantum dots.
    下载: 导出CSV

    表  3   CDs复合材料的抗菌性能

    Table  3   Antibacterial properties of CDs composites

    ClassificationAntimicrobialCompositeMIC/(μg·mL−1); SR/%; DIZ/mmRef.
    E. coliS. aureus
    CDs/antibioticRUTCDs-RUT180 μg·mL−1 (Dark)170 μg·mL−1 (Dark)[105]
    150 μg·mL−1 (Light)100 μg·mL−1 (Light)
    CDs/native compoundCSN-doped C-dot (CS)90.00% (100 μL)92.00% (100 μL)[109]
    N, S doped C-dot (CS)41.53% (100 μL)48.54% (100 μL)
    CurCQDs/Cur>99.9%[110]
    CDs/inorganic compoundCDs/Ag NPsAg NPsCDs/Ag NPs20 μg·mL−15 μg·mL−1[66]
    Ag NPs/CDs40 μg·mL−120 μg·mL−1[90]
    ACMCD-Ag10 μg·mL−15 μg·mL−1[92]
    CDs/Ag NPs12-13 mm13-15 mm[93]
    CQDs/Ag NPs10.88 mm11.22 mm[94]
    Ag NPs-ACNPs63.64%93.49%[95]
    Ag-GQDs25 μg·mL−1[96]
    CDs/metallic oxideZnOZnO@CQDs6 mg·mL−18 mg·mL−1[102]
    CDs/peroxideH2O2H2O2/CDs88%
    (0.59 mM H2O2/8 μg·mL−1 CDs)
    [59]
    CDs/FeFeFe-CDs99.85%99.68%[106]
    CDs/organic compoundCDs/dyeMBCDs/MB100%(1 μg·mL−1 MB/5 μg·mL−1 CDs)[107]
    TBCDs/TB100%(1 μg·mL−1 TB/
    5 μg·mL−1 CDs)
    BODIPYBODIPY@n-CDs256 μg·mL−1[108]
    BODIPY@p-CDs128 μg·mL−1
    CDs/polymerPVAN-doped C-dot (PVA)47.53% (100 μL)36.49% (100 μL)[109]
    N, S doped C-dot (PVA)56.47% (100 μL)46.51% (100 μL)
    PSN-doped C-dot (PS)70.50% (100 μL)39.86% (100 μL)
    N, S doped C-dot (PS)61.65% (100 μL)39.41% (100 μL)
    Notes:RUT—Rutin; CS—Chitosan; Cur—Curcumin; MB—Methylene blue; TB—Toluidine blue; BODIPY—Fluoroborondipyrrole; PVA—Polyvinyl alcohol; PS—Polysulfonatestyrene; ACMCD—Amphiphilic cow milk-derived CDs; ACNPs—Activated carbon nanoparticle.
    下载: 导出CSV
  • [1]

    WILLYARD C. The drug-resistant bacteria that pose the greatest health threats[J]. Nature,2017,543:15. DOI: 10.1038/nature.2017.21550

    [2]

    WANG Y, YANG Y, SHI Y, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives[J]. Advanced Materials,2020,32(18):1904106. DOI: 10.1002/adma.201904106

    [3]

    ZHEN N, WANG X Y, LI X, et al. Protein-based natural antibacterial materials and their applications in food preservation[J]. Microbial Biotechnology,2022,15(5):1324-1338. DOI: 10.1111/1751-7915.13918

    [4] 莫尊理, 胡惹惹, 王雅雯, 等. 抗菌材料及其抗菌机理[J]. 材料导报, 2014, 28(1):50-52, 90.

    MO Zunli, HU Rere, WANG Yawen, et al. Review of antibacterial materials and their mechanisms[J]. Materials Reports,2014,28(1):50-52, 90(in Chinese).

    [5] 王静, 水中和, 冀志江, 等. 银系无机抗菌材料研究进展[J]. 材料导报, 2013, 27(17):59-64, 78. DOI: 10.3969/j.issn.1005-023X.2013.17.012

    WANG Jing, SHUI Zhonghe, JI Zhijiang, et al. Research progress of the silver-typed inorganic antibacterial materials[J]. Materials Reports,2013,27(17):59-64, 78(in Chinese). DOI: 10.3969/j.issn.1005-023X.2013.17.012

    [6] 李媛, 韩玲珏, 王玥, 等. 光催化抗菌剂在医用抗菌方面的应用进展[J]. 中国材料进展, 2023, 42(2): 144-154.

    LI Yuan, HAN Lingjue, WANG Yue, et al. Application progress of photocatalytic antibacterial agents in medical antibacterial[J]. Materials China, 2023, 42(2): 144-154(in Chinese).

    [7] 姚希燕, 唐晓宁, 王晓楠, 等. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1):1105-1111. DOI: 10.11896/cldb.19090190

    YAO Xiyan, TANG Xiaoning, WANG Xiaonan, et al. Research progress on antibacterial mechanisms of inorganic antibacterial materials[J]. Materials Reports,2021,35(1):1105-1111(in Chinese). DOI: 10.11896/cldb.19090190

    [8]

    LI P F, SUN L, XUE S S, et al. Recent advances of carbon dots as new antimicrobial agents[J]. SmartMat,2022,3(2):226-248. DOI: 10.1002/smm2.1131

    [9]

    LI S, LI L, TU H Y, et al. The development of carbon dots: From the perspective of materials chemistry[J]. Materials Today,2021,51:188-207. DOI: 10.1016/j.mattod.2021.07.028

    [10]

    TRUSKEWYCZ A, YIN H, HALBERG N, et al. Carbon dot therapeutic platforms: Administration, distribution, metabolism, excretion, toxicity, and therapeutic potential[J]. Small, 2022, 18(16): 2106342.

    [11]

    CHATZIMITAKOS T G, KASOUNI A I, TROGANIS A N, et al. Exploring the antibacterial potential and unraveling the mechanism of action of non-doped and heteroatom-doped carbon nanodots[J]. Journal of Nanoparticle Research,2020,22(2):1-13.

    [12]

    YAN F, JIANG Y, SUN X, et al. Surface modification and chemical functionalization of carbon dots: A review[J]. Microchimica Acta,2018,185(9):1-34.

    [13]

    JOHN V L, NAIR Y, VINOD T P. Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications[J]. Particle & Particle Systems Characterization,2021,38(11):2100170.

    [14]

    DOLMANS D E, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer,2003,3(5):380-387. DOI: 10.1038/nrc1071

    [15]

    HU X Q, HUANG Y Y, WANG Y G, et al. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections[J]. Frontiers in Microbiology,2018,9:1299. DOI: 10.3389/fmicb.2018.01299

    [16]

    KIM A, ZHOU J, SAMADDAR S, et al. An implantable ultrasonically-powered micro-light-source (µlight) for photodynamic therapy[J]. Scientific Reports,2019,9(1):1-9. DOI: 10.1038/s41598-019-38554-2

    [17]

    NAZZAL S, CHEN C P, TSAI T. Nanotechnology in antimicrobial photodynamic inactivation[J]. Journal of Food and Drug Analysis,2011,19(4):12.

    [18]

    WU X, ABBAS K, YANG Y, et al. Photodynamic anti-bacteria by carbon dots and their nano-composites[J]. Pharmaceuticals,2022,15(4):487. DOI: 10.3390/ph15040487

    [19]

    GAO Z, YANG D Z, WAN Y, et al. One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation[J]. Analytical and Bioanalytical Chemistry,2020,412:871-880. DOI: 10.1007/s00216-019-02293-0

    [20]

    DONG X L, LIANG W X, MEZIANI M J, et al. Carbon dots as potent antimicrobial agents[J]. Theranostics,2020,10(2):671. DOI: 10.7150/thno.39863

    [21]

    YU J K, YONG X, TANG Z Y, et al. Theoretical understanding of structure-property relationships in luminescence of carbon dots[J]. The Journal of Physical Chemistry Letters,2021,12(32):7671-7687. DOI: 10.1021/acs.jpclett.1c01856

    [22]

    JIA Q Y, SONG Q, LI P, et al. Rejuvenated photodynamic therapy for bacterial infections[J]. Advanced Healthcare Materials,2019,8(14):1900608. DOI: 10.1002/adhm.201900608

    [23]

    ZHAI Y, ZHANG B, SHI R, et al. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis[J]. Advanced Energy Materials,2022,12(6):2103426. DOI: 10.1002/aenm.202103426

    [24]

    SONG Y B, ZHU S J, YANG B. Bioimaging based on fluorescent carbon dots[J]. RSC Advances,2014,4(52):27184-27200. DOI: 10.1039/c3ra47994c

    [25] 陈童, 刘兴华, 郑静霞, 等. 碳点基白光荧光薄膜的研究进展[J]. 复合材料学报, 2022, 39(1):48-63.

    CHEN Tong, LIU Xinghua, ZHENG Jingxia, et al. Research progress of carbon dots based white light emitting fluorescent films[J]. Acta Materiae Compositae Sinica,2022,39(1):48-63(in Chinese).

    [26]

    XIA C L, ZHU S J, FENG T L, et al. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots[J]. Advanced Science,2019,6(23):1901316. DOI: 10.1002/advs.201901316

    [27]

    LI P L, YANG X, ZHANG X H, et al. Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots[J]. Journal of Materials Science,2020,55(35):16744-16757. DOI: 10.1007/s10853-020-05262-6

    [28]

    GHIRARDELLO M, RAMOS-SORIANO J, GALAN M C. Carbon dots as an emergent class of antimicrobial agents[J]. Nanomaterials,2021,11(8):1877. DOI: 10.3390/nano11081877

    [29] 刘晨艳, 闫凯, 马建中. 碳点及其纳米复合材料抗菌性能的研究进展[J]. 化工新型材料, 2022, 50(1):56-61.

    LIU Chenyan, YAN Kai, MA Jianzhong. Research progress on antibacterial property of carbon quantum dots and their nanocomposite[J]. New Chemical Materials,2022,50(1):56-61(in Chinese).

    [30] 张超, 张利, 刘兴华, 等. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(S1):53-57.

    ZHANG Chao, ZHANG Li, LIU Xinghua, et al. Research advances in antibacterial properties and applications in biomedicine of carbon nanomaterials[J]. Materials Reports,2020,34(S1):53-57(in Chinese).

    [31]

    CHEN S, H GUO H X, CUI M, et al. Interaction of particles with mucosae and cell membranes[J]. Colloids and Surfaces B-Biointerfaces,2020,186:110657. DOI: 10.1016/j.colsurfb.2019.110657

    [32]

    JIAN H J, WU R S, LIN T Y, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis[J]. ACS Nano,2017,11(7):6703-6716. DOI: 10.1021/acsnano.7b01023

    [33]

    JOSHI A S, SINGH P, MIJAKOVIC I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance[J]. International Journal of Molecular Sciences,2020,21(20):7658. DOI: 10.3390/ijms21207658

    [34]

    LINKLATER D P, BAULIN V A, LE GUÉVEL X, et al. Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes[J]. Advanced Materials,2020,32(52):2005679. DOI: 10.1002/adma.202005679

    [35] 梁春燕. 碳点的可控制备及其与DNA/蛋白质的相互作用[D]. 黄石: 湖北师范大学, 2019.

    LIANG Chunyan. Controllable preparation of carbon dots and their interaction with DNA and protein[D]. Huangshi: Hubei Normal University, 2019(in Chinese).

    [36]

    PAN T, CHEN H H, GAO X, et al. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication[J]. Journal of Hazardous Materials,2022,435:128996. DOI: 10.1016/j.jhazmat.2022.128996

    [37]

    LIU M, HUANG L, XU X Y, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining[J]. ACS Nano,2022,16(6):9479-9497. DOI: 10.1021/acsnano.2c02518

    [38]

    RISTIC B Z, MILENKOVIC M M, DAKIC I R, et al. Photodynamic antibacterial effect of graphene quantum dots[J]. Biomaterials,2014,35(15):4428-4435. DOI: 10.1016/j.biomaterials.2014.02.014

    [39]

    QIE X W, ZAN M H, GUI P, et al. Design, synthesis, and application of carbon dots with synergistic antibacterial activity[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 894100.

    [40]

    WEN F Z, LI P Y, MENG H R, et al. Nitrogen-doped carbon dots/curcumin nanocomposite for combined photodynamic/photothermal dual-mode antibacterial therapy[J]. Photodiagnosis and Photodynamic Therapy,2022,39:103033. DOI: 10.1016/j.pdpdt.2022.103033

    [41]

    PRAJAPATI J D, KLEINEKATHÖFER U, WINTERHALTER M. How to enter a bacterium: bacterial porins and the permeation of antibiotics[J]. Chemical Reviews,2021,121(9):5158-5192. DOI: 10.1021/acs.chemrev.0c01213

    [42]

    VARGHESE M, BALACHANDRAN M. Antibacterial efficiency of carbon dots against gram-positive and gram-negative bacteria: A review[J]. Journal of Environmental Chemical Engineering,2021,9(6):106821. DOI: 10.1016/j.jece.2021.106821

    [43] 张荣. 新型荧光碳点的制备及其在传感、生物成像和抗菌中的应用[D]. 太原: 山西医科大学, 2019.

    ZHANG Rong. Preparation of novel fluorescent carbon dots and their application in sensing, bioimaging and antibacterum[D]. Taiyuan: Shanxi Medical University, 2019(in Chinese).

    [44]

    LU F, MA Y R, WANG H B, et al. Water-solvable carbon dots derived from curcumin and citric acid with enhanced broad-spectrum antibacterial and antibiofilm activity[J]. Materials Today Communications,2021,26:102000. DOI: 10.1016/j.mtcomm.2020.102000

    [45]

    LI J C, MAO H L, KAWAZOE N, et al. Insight into the interactions between nanoparticles and cells[J]. Biomaterials Science,2017,5(2):173-189. DOI: 10.1039/C6BM00714G

    [46]

    SHANG L, NIENHAUS K, NIENHAUS G U. Engineered nanoparticles interacting with cells: Size matters[J]. Journal of Nanobiotechnology,2014,12(1):1-11. DOI: 10.1186/1477-3155-12-5

    [47]

    ZHAO F, ZHAO Y, LIU Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials[J]. Small,2011,7(10):1322-1337. DOI: 10.1002/smll.201100001

    [48]

    SUN B H, WU F, ZHANG Q C. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots[J]. Journal of Colloid and Interface Science,2021,584:505-519. DOI: 10.1016/j.jcis.2020.10.015

    [49]

    DI LORENZO F, DUDA K A, LANZETTA R, et al. A journey from structure to function of bacterial lipopolysaccharides[J]. Chemical Reviews,2021,122(20):15767-15821.

    [50]

    WANG H B, LU F, MA C Q, et al. Carbon dots with positive surface charge from tartaric acid and m-aminophenol for selective killing of gram-positive bacteria[J]. Journal of Materials Chemistry B,2021,9(1):125-130. DOI: 10.1039/D0TB02332A

    [51]

    BING W, SUN H J, YAN Z Q, et al. Programmed bacteria death induced by carbon dots with different surface charge[J]. Small,2016,12(34):4713-4718. DOI: 10.1002/smll.201600294

    [52]

    WU L, GAO Y R, ZHAO C F, et al. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing[J]. Biomaterials Advances,2022,133:112608. DOI: 10.1016/j.msec.2021.112608

    [53]

    MAHAT N A, NOR N S M, SHAMSUDIN S A. Effects of positive carbon quantum dots on gram-negative bacteria as an antimicrobial agent[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2428-2440.

    [54]

    ZHAO C F, WANG X W, YU L Y, et al. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria[J]. Acta Biomaterialia,2022,138:528-544. DOI: 10.1016/j.actbio.2021.11.010

    [55]

    SVIRIDOVA E, BARRAS A, ADDAD A, et al. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity[J]. Materials Science and Engineering: C, 2022, 134: 112697.

    [56]

    LI Y J, HARROUN S G, SU Y C, et al. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria[J]. Advanced Healthcare Materials,2016,5(19):2545-2554. DOI: 10.1002/adhm.201600297

    [57]

    GAGIC M, KOCIOVA S, SMERKOVA K, et al. One-pot synthesis of natural amine-modified biocompatible carbon quantum dots with antibacterial activity[J]. Journal of Colloid and Interface Science,2020,580:30-48. DOI: 10.1016/j.jcis.2020.06.125

    [58]

    DEVKOTA A, PANDEY A, YADEGARI Z, et al. Amine-coated carbon dots (NH2-FCDs) as novel antimicrobial agent for gram-negative bacteria[J]. Frontiers in Nanotechnology, 2021, 3: 78.

    [59]

    DONG X L, AWAK M A, TOMLINSON N, et al. Antibacterial effects of carbon dots in combination with other antimicrobial reagents[J]. PloS One,2017,12(9):e0185324. DOI: 10.1371/journal.pone.0185324

    [60]

    OTIS G, BHATTACHARYA S, MALKA O, et al. Selective labeling and growth inhibition of Pseudomonas aeruginosa by aminoguanidine carbon dots[J]. ACS Infectious Diseases,2018,5(2):292-302.

    [61]

    YANG J, ZHANG X, MA Y H, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications[J]. ACS Applied Materials & Interfaces,2016,8(47):32170-32181.

    [62]

    JIJIE R, BARRAS A, BOUCKAERT J, et al. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects[J]. Colloids and Surfaces B: Biointerfaces,2018,170:347-354. DOI: 10.1016/j.colsurfb.2018.06.040

    [63]

    PARK Y, YOO J, LIM B, et al. Improving the functionality of carbon nanodots: Doping and surface functionalization[J]. Journal of Materials Chemistry A,2016,4(30):11582-11603. DOI: 10.1039/C6TA04813G

    [64]

    MIAO S H, LIANG K, ZHU J J, et al. Hetero-atom-doped carbon dots: Doping strategies, properties and applications[J]. Nano Today,2020,33:100879. DOI: 10.1016/j.nantod.2020.100879

    [65]

    JAIN J, ARORA S, RAJWADE J M, et al. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use[J]. Molecular Pharmaceutics,2009,6(5):1388-1401. DOI: 10.1021/mp900056g

    [66]

    ZHAO D, LIU X M, ZHANG R, et al. Preparation of two types of silver-doped fluorescent carbon dots and determination of their antibacterial properties[J]. Journal of Inorganic Biochemistry,2021,214:111306. DOI: 10.1016/j.jinorgbio.2020.111306

    [67]

    RAINA S, THAKUR A, SHARMA A, et al. Bactericidal activity of Cannabis sativa phytochemicals from leaf extract and their derived carbon dots and Ag@carbon dots[J]. Materials Letters,2020,262:127122. DOI: 10.1016/j.matlet.2019.127122

    [68]

    JANA J, GAURI S S, GANGULY M, et al. Silver nanoparticle anchored carbon dots for improved sensing, catalytic and intriguing antimicrobial activity[J]. Dalton Transactions,2015,44(47):20692-20707. DOI: 10.1039/C5DT03858H

    [69]

    WANG M Q, SU Y T, LIU Y H, et al. Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing[J]. Journal of Colloid and Interface Science,2022,608:973-983. DOI: 10.1016/j.jcis.2021.10.018

    [70] 苏玉天. 新型碳量子点的制备与性能研究[D]. 南京: 南京师范大学, 2017.

    SU Yutian. Study on the preparation and performance of new carbon quantum dots[D]. Nanjing: Nanjing Normal University, 2017(in Chinese).

    [71]

    ZHANG M, WANG W T, YUAN P, et al. Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis[J]. Chemical Engineering Journal,2017,330:1137-1147. DOI: 10.1016/j.cej.2017.07.166

    [72]

    ZHAO C F, WANG X W, WU L, et al. Nitrogen-doped carbon quantum dots as an antimicrobial agent against staphylococcus for the treatment of infected wounds[J]. Colloids and Surfaces B-Biointerfaces,2019,179:17-27. DOI: 10.1016/j.colsurfb.2019.03.042

    [73]

    WANG H, SONG Z, GU J, et al. Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection[J]. ACS Biomaterials Science & Engineering,2019,5(9):4739-4749.

    [74]

    TRAVLOU N A, GIANNAKOUDAKIS D A, ALGARRA M, et al. S-and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity[J]. Carbon,2018,135:104-111. DOI: 10.1016/j.carbon.2018.04.018

    [75]

    SUTEKIN S D, SAHINER M, SUNER S S, et al. Poly(vinylamine) derived N-doped C-dots with antimicrobial and antibiofilm activities[J]. Journal of Carbon Research,2021,7(2):40. DOI: 10.3390/c7020040

    [76]

    YADAV P, NISHANTHI S T, PUROHIT B, et al. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: an insight study[J]. Carbon,2019,152:587-597. DOI: 10.1016/j.carbon.2019.06.045

    [77]

    EZATI P, RHIM J W, MOLAEI R, et al. Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity[J]. Sustainable Materials and Technologies,2022,32:e00397. DOI: 10.1016/j.susmat.2022.e00397

    [78]

    KNOBLAUCH R, HARVEY A, RA E, et al. Antimicrobial carbon nanodots: Photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots[J]. Nanoscale,2021,13(1):85-99. DOI: 10.1039/D0NR06842J

    [79]

    ZHANG M Z, ZHAI X Y, MA T F, et al. Multifunctional cerium doped carbon dots nanoplatform and its applications for wound healing[J]. Chemical Engineering Journal,2021,423:130301. DOI: 10.1016/j.cej.2021.130301

    [80]

    QING W X, CHEN K, YANG Y Y, et al. Cu2+-doped carbon dots as fluorescence probe for specific recognition of Cr(VI) and its antimicrobial activity[J]. Microchemical Journal,2020,152:104262. DOI: 10.1016/j.microc.2019.104262

    [81]

    LIU D N, YANG M X, LIU X C, et al. Zinc-doped carbon dots as effective blue-light-activated antibacterial agent[J]. Nano,2021,16(3):2150031. DOI: 10.1142/S1793292021500314

    [82] ZHONG Z L, ZHANG Y Y, FU X Y, et al. Construction of photo-induced zinc-doped carbon dots based on drug-resistant bactericides and their application for local treatment[J]. Nanoscale Advances, 2022, 4(24): 5365-5377.
    [83]

    ROY S, EZATI P, RHIM J W, et al. Preparation of turmeric-derived sulfur-functionalized carbon dots: Antibacterial and antioxidant activity[J]. Journal of Materials Science,2022,57(4):2941-2952. DOI: 10.1007/s10853-021-06804-2

    [84]

    CHAI S Q, ZHOU L J, PEI S C, et al. P-doped carbon quantum dots with antibacterial activity[J]. Micromachines,2021,12(9):1116. DOI: 10.3390/mi12091116

    [85]

    WANG J, ZHU Y X, XIE X F, et al. Effect of ultra-trace Ag doping on the antibacterial performance of carbon quantum dots[J]. Journal of Environmental Chemical Engineering,2022,10(2):107112. DOI: 10.1016/j.jece.2021.107112

    [86]

    KADIAN S, MANIK G, DAS N, et al. Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver-sulfur doped graphene quantum dot (Ag@S-GQDs) nanocomposites[J]. Journal of Materials Chemistry B,2020,8(15):3028-3037. DOI: 10.1039/C9TB02823D

    [87]

    LIU W J, GU H, LIU W K, et al. NIR-emitting carbon dots for discriminative imaging and photo-inactivation of pathogenic bacteria[J]. Chemical Engineering Journal,2022,450:137384. DOI: 10.1016/j.cej.2022.137384

    [88]

    LE OUAY B, STELLACCI F. Antibacterial activity of silver nanoparticles: A surface science insight[J]. Nano Today,2015,10(3):339-354. DOI: 10.1016/j.nantod.2015.04.002

    [89]

    MA J L, LI K X, GU S B, et al. Antimicrobial carbon-dot-stabilized silver nanoparticles[J]. New Journal of Chemistry,2022,46(5):2546-2552. DOI: 10.1039/D1NJ05798G

    [90]

    WANG P, Y SONG Y Z, MEI Q, et al. Sliver nanoparticles@ carbon dots for synergistic antibacterial activity[J]. Applied Surface Science,2022,600:154125. DOI: 10.1016/j.apsusc.2022.154125

    [91]

    LIU T Y, PANG Q Y, MAI K, et al. Silver nanoparticle@carbon quantum dot composite as an antibacterial agent[J]. RSC Advances,2022,12(16):9621-9627. DOI: 10.1039/D2RA00561A

    [92]

    HAN S, ZHANG H, XIE Y J, et al. Application of cow milk-derived carbon dots/AgNPs composite as the antibacterial agent[J]. Applied Surface Science,2015,328:368-373. DOI: 10.1016/j.apsusc.2014.12.074

    [93]

    WEI X J, CHENG F, YAO Y, et al. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application[J]. RSC Advances,2021,11(30):18417-18422. DOI: 10.1039/D1RA02600C

    [94]

    CHENG Y L, WEI Y, FANG C Q, et al. Facile synthesis of CQDs/AgNPs composites with photoluminescence and their potential application in antibacterial materials[J]. Inorganic Chemistry Communications,2021,134:109059. DOI: 10.1016/j.inoche.2021.109059

    [95]

    WIBAWA P J, NUR M, ASY’ARI M, et al. Green synthesized silver nanoparticles immobilized on activated carbon nanoparticles: Antibacterial activity enhancement study and its application on textiles fabrics[J]. Molecules,2021,26(13):3790. DOI: 10.3390/molecules26133790

    [96]

    HABIBA K, BRACHO-RINCON D P, GONZALEZ-FELICIANO J A, et al. Synergistic antibacterial activity of PEGylated silver-graphene quantum dots nanocomposites[J]. Applied Materials Today,2015,1(2):80-87. DOI: 10.1016/j.apmt.2015.10.001

    [97]

    DA SILVA B L, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification[J]. Colloids and Surfaces B: Biointerfaces,2019,177:440-447. DOI: 10.1016/j.colsurfb.2019.02.013

    [98]

    MYDEEN S S, KUMAR R R, KOTTAISAMY M, et al. Biosynthesis of ZnO nanoparticles through extract from prosopis julifora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis[J]. Journal of Saudi Chemical Society,2020,24(5):393-406. DOI: 10.1016/j.jscs.2020.03.003

    [99]

    QI K Z, CHENG B, YU J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727:792-820. DOI: 10.1016/j.jallcom.2017.08.142

    [100]

    MYDEEN S S, KUMAR R R, SIVAKUMAR R, et al. Graphene quantum dots/ZnO nanocomposite: Synthesis, characterization, mechanistic investigations of photocatalytic and antibacterial activities[J]. Chemical Physics Letters,2020,761:138009. DOI: 10.1016/j.cplett.2020.138009

    [101]

    ABEBE B, ZEREFFA E A, TADESSE A, et al. A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation[J]. Nanoscale Research Letters,2020,15(1):1-19. DOI: 10.1186/s11671-020-03418-6

    [102]

    GAO D, ZHAO P, LYU B, et al. Carbon quantum dots decorated on ZnO nanoparticles: an efficient visible-light responsive antibacterial agents[J]. Applied Organometallic Chemistry,2020,34(8):e5665.

    [103]

    YAN Y Y, KUANG W C, SHI L J, et al. Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light[J]. Journal of Alloys and Compounds,2019,777:234-243. DOI: 10.1016/j.jallcom.2018.10.191

    [104]

    THAKUR M, PANDEY S, MEWADA A, et al. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity[J]. Journal of Drug Delivery,2014,2014:282193.

    [105]

    TEJWAN N, KUNDU M, GHOSH N, et al. Synthesis of green carbon dots as bioimaging agent and drug delivery system for enhanced antioxidant and antibacterial efficacy[J]. Inorganic Chemistry Communications,2022,139:109317. DOI: 10.1016/j.inoche.2022.109317

    [106]

    LIU Y H, XU B L, LU M Z, et al. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing[J]. Bioactive Materials,2022,12:246-256. DOI: 10.1016/j.bioactmat.2021.10.023

    [107]

    DONG X L, BOND A E, PAN N, et al. Synergistic photoactivated antimicrobial effects of carbon dots combined with dye photosensitizers[J]. International Journal of Nanomedicine,2018,13:8025. DOI: 10.2147/IJN.S183086

    [108]

    MOU C J, WANG X Y, LIU Y C, et al. Positively charged BODIPY@carbon dot nanocomposites for enhanced photomicrobicidal efficacy and wound healing[J]. Journal of Materials Chemistry B,2022,10(39):8094-8099. DOI: 10.1039/D2TB01539K

    [109]

    DANIEL S, KS S. Highly luminescent biocompatible doped nano carbon dot composites as efficient antibacterial agents[J]. Composite Interfaces,2021,28(11):1155-1170. DOI: 10.1080/09276440.2020.1867466

    [110]

    WEN F Z, LI P Y, ZHANG Y, et al. Preparation, characterization of green tea carbon quantum dots/curcumin antioxidant and antibacterial nanocomposites[J]. Journal of Molecular Structure, 2022, 1273: 134247.

    [111]

    EZATI P, RHIM J W, MOLAEI R, et al. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit[J]. Postharvest Biology and Technology,2022,186:111845. DOI: 10.1016/j.postharvbio.2022.111845

    [112]

    SUWAILEH W, PATHAK N, SHON H, et al. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook[J]. Desalination,2020,485:114455. DOI: 10.1016/j.desal.2020.114455

    [113]

    MAHAT N A, SHAMSUDIN S A, JULLOK N, et al. Carbon quantum dots embedded polysulfone membranes for antibacterial performance in the process of forward osmosis[J]. Desalination,2020,493:114618. DOI: 10.1016/j.desal.2020.114618

    [114]

    KAMOUN E A, KENAWY E R S, CHEN X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research,2017,8(3):217-233. DOI: 10.1016/j.jare.2017.01.005

    [115]

    YANG X, LI P L, TANG W T, et al. A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity[J]. Carbohydrate Polymers,2021,251:117040. DOI: 10.1016/j.carbpol.2020.117040

    [116]

    NIE X L, WU S L, MENSAH A, et al. Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation[J]. Materials Science & Engineering C—Materials for Biological Applications,2020,108:110377.

    [117]

    KOULIVAND H, SHAHBAZI A, VATANPOUR V, et al. Novel antifouling and antibacterial polyethersulfone membrane prepared by embedding nitrogen-doped carbon dots for efficient salt and dye rejection[J]. Materials Science & Engineering: C,2020,111:110787.

  • 期刊类型引用(2)

    1. 李涵,潘扬,张莹,王琦,廖鄂,陈季旺. 黄鳝骨基碳量子点的制备及抑菌性能研究. 武汉轻工大学学报. 2024(01): 1-8+27 . 百度学术
    2. 陈琳,钟雅美,于世平. 零维纳米碳基靶向药物递送系统在肿瘤治疗中的研究进展(综述). 太原理工大学学报. 2024(03): 399-413 . 百度学术

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  2150
  • HTML全文浏览量:  687
  • PDF下载量:  181
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-11-13
  • 修回日期:  2023-02-14
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-03-05
  • 刊出日期:  2023-07-14

目录

/

返回文章
返回