留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米粒子形貌对聚吡咯/LDPE纳米复合材料直流介电性能的影响

张城城 任兆辉 任强 赵洪

张城城, 任兆辉, 任强, 等. 纳米粒子形貌对聚吡咯/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2023, 40(5): 2598-2608. doi: 10.13801/j.cnki.fhclxb.20220809.009
引用本文: 张城城, 任兆辉, 任强, 等. 纳米粒子形貌对聚吡咯/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2023, 40(5): 2598-2608. doi: 10.13801/j.cnki.fhclxb.20220809.009
ZHANG Chengcheng, REN Zhaohui, REN Qiang, et al. Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2598-2608. doi: 10.13801/j.cnki.fhclxb.20220809.009
Citation: ZHANG Chengcheng, REN Zhaohui, REN Qiang, et al. Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2598-2608. doi: 10.13801/j.cnki.fhclxb.20220809.009

纳米粒子形貌对聚吡咯/LDPE纳米复合材料直流介电性能的影响

doi: 10.13801/j.cnki.fhclxb.20220809.009
基金项目: 国家自然科学基金(51707049);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2016027)
详细信息
    通讯作者:

    张城城,博士,副教授,硕士生导师,研究方向为聚合物绝缘材料改性及其介电性能研究 E-mail: cczh0111@126.com

  • 中图分类号: TB332

Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites

Funds: National Natural Science Foundation of China (51707049); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016027)
  • 摘要: 为了研究不同微观形貌的纳米导电粒子对低密度聚乙烯(LDPE)直流介电性能的影响,本文采用软模板法制备了直径约100 nm的聚吡咯(PPy)纳米球和纳米线,并将其与LDPE熔融共混制备得到了PPy/LDPE纳米复合材料。利用扫描电子显微镜(SEM)观察了PPy纳米粒子的微观形貌及其在PPy/LDPE纳米复合材料中的分散结构,并测试了复合材料的结晶度、空间电荷分布、介电谱、不同温度下的直流电导电流及直流击穿强度等介电性能。结果表明:PPy纳米粒子的加入可以提高LDPE的结晶度,抑制LDPE中空间电荷的累积,降低其相对介电常数、直流电导电流和直流击穿强度,其中PPy纳米球的加入可在不同温度下使LDPE直流电导电流降低1个数量级以上,而对其直流击穿强度的影响较小,并且在较高温度下可将LDPE的直流击穿强度提升4.4%。PPy纳米球对LDPE绝缘材料直流介电性能的改善效果要优于PPy纳米线。

     

  • 图  1  聚吡咯纳米球(PPy(S)) (a)和聚吡咯纳米线(PPy(W)) (b)的SEM图像

    Figure  1.  SEM images of polypyrrole nanospheres (PPy(S)) (a) and polypyrrole nanowires (PPy(W)) (b)

    图  2  LDPE和PPy/LDPE纳米复合材料的SEM图像

    Figure  2.  SEM images of LDPE and PPy/LDPE nanocomposites

    图  3  PPy纳米粒子、LDPE和PPy/LDPE纳米复合材料红外图谱

    Figure  3.  FTIR spectra of PPy nanoparticles, LDPE and PPy/LDPE nanocomposites

    图  4  LDPE和PPy/LDPE纳米复合材料的DSC曲线

    Figure  4.  DSC curves of LDPE and PPy/LDPE nanocomposites

    图  5  LDPE空间电荷分布

    Figure  5.  Space charge distribution of LDPE

    图  6  PPy/LDPE纳米复合材料空间电荷分布

    Figure  6.  Space charge distribution of PPy/LDPE nanocomposites

    图  7  LDPE和PPy/LDPE纳米复合材料短路3 s时平均体电荷密度

    Figure  7.  Mean volume charge density of LDPE and PPy/LDPE nanocomposites during short circuit at 3 s

    图  8  PPy(S)和PPy(W)的电导率

    Figure  8.  Conductivity of PPy(S) and PPy(W)

    图  9  LDPE和PPy/LDPE纳米复合材料在不同温度下的电导电流密度曲线

    Figure  9.  Conductive current density curves of LDPE and PPy/LDPE nanocomposites at different temperatures

    图  10  LDPE和PPy/LDPE纳米复合材料在不同温度下的直流(DC)击穿强度Weibull分布图

    Figure  10.  Weibull distribution of direct current (DC) breakdown strength of LDPE and PPy/LDPE nanocomposites at different temperatures

    图  11  LDPE和PPy/LDPE纳米复合材料介电性能

    Figure  11.  Dielectric properties of LDPE and PPy/LDPE nanocomposites

    表  1  低密度聚乙烯(LDPE)及聚吡咯(PPy)/LDPE纳米复合材料的命名

    Table  1.   Nomenclature of low-density polyethylene (LDPE) and polypyrrole (PPy)/LDPE nanocomposites

    Material LDPE content/wt% PPy(S) content/wt% PPy(W) content/wt%
    LDPE 100 0 0
    PPy(S)/LDPE 100 0.5 0
    PPy(W)/LDPE 100 0 0.5
    Notes: PPy(S)―Polypyrrole nanospheres; PPy(W)―Polypyrrole nanowires.
    下载: 导出CSV

    表  2  LDPE和PPy/LDPE纳米复合材料DSC测试结果

    Table  2.   DSC test results of LDPE and PPy/LDPE nanocomposites

    SampleWc/%Tm/℃Tc/℃
    LDPE39.60110.8395.17
    PPy(S)/LDPE45.01109.6794.67
    PPy(W)/LDPE40.95110.3396.50
    Notes: Wc—Crystallinity of the sample; Tm and Tc—Melting and crystallization peak temperature, respectively.
    下载: 导出CSV
  • [1] 李春阳, 韩宝忠, 张城城, 等. 电压稳定剂提高PE/XLPE绝缘耐电性能研究综述[J]. 中国电机工程学报, 2017, 37(16):4850-4864.

    LI Chunyang, HAN Baozhong, ZHANG Chengcheng, et al. Review of voltage stabilizer improving the electrical strength of PE/XLPE[J]. Proceedings of the CSEE,2017,37(16):4850-4864(in Chinese).
    [2] 巫运辉, 查俊伟, 王思蛟, 等. 多层介孔纳米MgO/低密度聚乙烯复合材料的制备及其绝缘性能[J]. 复合材料学报, 2016, 33(3):503-509.

    WU Yunhui, ZHA Junwei, WANG Sijiao, et al. Preparation and insulating electrical properties of multilayer mesoporous nano MgO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2016,33(3):503-509(in Chinese).
    [3] 何金良, 彭琳, 周垚. 环保型高压直流电缆绝缘材料研究进展[J]. 高电压技术, 2017, 43(2):337-343.

    HE Jinliang, PENG Lin, ZHOU Yao. Research progress of environment-friendly HVDC power cable insulation materials[J]. High Voltage Engineering,2017,43(2):337-343(in Chinese).
    [4] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1):179-191.

    DU Boxue, HAN Chenlei, LI Jin, et al. Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society,2019,34(1):179-191(in Chinese).
    [5] ZHOU Y, PENG S M, HU J L, et al. Polymeric insulation materials for HVDC cables: Development, challenges and future perspective[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(3):1308-1318. doi: 10.1109/TDEI.2017.006205
    [6] 姜洪涛, 张晓虹, 高俊国, 等. SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响[J]. 复合材料学报, 2022, 39(2):645-655.

    JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica,2022,39(2):645-655(in Chinese).
    [7] 胡世勋, 张雅茹, 邵清, 等. 不同改性技术路线的聚丙烯基高压直流电缆绝缘材料综合性能比较[J]. 中国电机工程学报, 2022, 42(4):1243-1252. doi: 10.13334/j.0258-8013.pcsee.212446

    HU Shixun, ZHANG Yaru, SHAO Qing, et al. Comprehen-sive performance comparisons of polypropylene-based HVDC cable insulating materials adopting different modification technical routes[J]. Proceedings of the CSEE,2022,42(4):1243-1252(in Chinese). doi: 10.13334/j.0258-8013.pcsee.212446
    [8] 杜伯学, 侯兆豪, 徐航, 等. 高压直流电缆绝缘用聚丙烯及其纳米复合材料的研究进展[J]. 高电压技术, 2017, 43(9):2769-2780.

    DU Boxue, HOU Zhaohao, XU Hang, et al. Research achievements in polypropylene and polypropylene/inorganic nanocomposites for HVDC cable insulation[J]. High Voltage Engineering,2017,43(9):2769-2780(in Chinese).
    [9] MURAKAMI Y, NEMOTO M, OKUZUMI S, et al. DC conduction and electrical breakdown of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):33-39. doi: 10.1109/T-DEI.2008.4446734
    [10] TAKADA T, HAYASE Y, TANAKA Y, et al. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):152-160. doi: 10.1109/T-DEI.2008.4446746
    [11] SMITH R C, LIANG C, LANDRY M, et al. The mechanisms leading to the useful electrical properties of polymer nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):187-196. doi: 10.1109/T-DEI.2008.4446750
    [12] 程羽佳, 郭宁, 王若石, 等. 纳米ZnO和纳米MMT对低密度聚乙烯介电性能的影响[J]. 复合材料学报, 2015, 32(1):94-100.

    CHENG Yujia, GUO Ning, WANG Ruoshi, et al. Effects of nano-ZnO and nano-montmorillonte on dielectric properties of low density polyethylene[J]. Acta Materiae Compo-sitae Sinica,2015,32(1):94-100(in Chinese).
    [13] DU B X, HAN C L, LI Z L, et al. Effect of graphene oxide particles on space charge accumulation in LDPE/GO nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(4):1479-1486. doi: 10.1109/TDEI.2018.006874
    [14] 朱新丰, 曲鹏, 彭晓晗, 等. 有限元法研究填料形貌与介电常数对无机/有机介电复合材料介电性能的影响[J]. 复合材料学报, 2019, 36(12):2887-2893.

    ZHU Xinfeng, QU Peng, PENG Xiaohan, et al. Computational study of both morphologies and dielectric constant of fillers on dielectric properties of inorganic/organic dielectric composites by finite element method[J]. Acta Materiae Compositae Sinica,2019,36(12):2887-2893(in Chinese).
    [15] 徐晓英, 王世安, 王辉. 复合导电高分子材料微观网络结构及导电行为仿真分析[J]. 高电压技术, 2012, 38(9):2221-2229.

    XU Xiaoying, WANG Shi'an, WANG Hui. Simulation analysis on the micro-network structure and conducting behavior of conductive polymer composites[J]. High Voltage Engineering,2012,38(9):2221-2229(in Chinese).
    [16] 彭涛, 姚梓锋, 李海珊, 等. 聚吡咯纳米导电聚合物制备及表征[J]. 广州化工, 2022, 50(1):40-42, 47. doi: 10.3969/j.issn.1001-9677.2022.01.016

    PENG Tao, YAO Zifeng, LI Haishan, et al. Preparation and characterization of polypyrrole nano conductive polymer[J]. Guangzhou Chemical Industry,2022,50(1):40-42, 47(in Chinese). doi: 10.3969/j.issn.1001-9677.2022.01.016
    [17] 于万永, 赵磊, 王宁, 等. 聚乙烯醇-聚吡咯复合纳米纤维的制备及其导电性能[J]. 复合材料学报, 2018, 35(5):1059-1065.

    YU Wanyong, ZHAO Lei, WANG Ning, et al. Fabrication and conductive properties of polyvinyl alcohol-polypyrrole composite nano fibers[J]. Acta Materiae Compositae Sinica,2018,35(5):1059-1065(in Chinese).
    [18] ZHANG C C, ZHANG H Y, LI C Y, et al. Crosslinked polyethylene/polypyrrole nanocomposites with improved direct current electrical characteristics[J]. Polymer Testing,2018,71:223-230. doi: 10.1016/j.polymertesting.2018.09.020
    [19] LI C M, DUAN S X, ZHANG C C, et al. Research on DC dielectric properties of polyaniline nanofibers/LDPE composites[J]. High Performance Polymers,2018,30(1):76-81. doi: 10.1177/0954008316680278
    [20] 王亚林, 吴建东, 万佳东, 等. 低密度聚乙烯空间电荷与电导电流的联合测量[J]. 南方电网技术, 2015, 9(10):92-96. doi: 10.13648/j.cnki.issn1674-0629.2015.10.015

    WANG Yalin, WU Jiandong, WAN Jiadong, et al. Combined measurement of space charge and conduction current in low density polyethylene[J]. Southern Power System Technology,2015,9(10):92-96(in Chinese). doi: 10.13648/j.cnki.issn1674-0629.2015.10.015
    [21] 谢侃, 陈冬梅, 蔡霞, 等. PE微观结构的红外光谱实用表征[J]. 合成树脂及塑料, 2005, 22(1):48-52. doi: 10.3969/j.issn.1002-1396.2005.01.013

    XIE Kan, CHEN Dongmei, CAI Xia, et al. Study on the practical characterization of the microstructure of polyethylene by infrared spectroscopy[J]. China Synthetic Resin and Plastics,2005,22(1):48-52(in Chinese). doi: 10.3969/j.issn.1002-1396.2005.01.013
    [22] TRAN H D, SHIN K, HONG W G, et al. A template-free route to polypyrrole nanofibers[J]. Macromolecular Rapid Communications,2007,28(24):2289-2293. doi: 10.1002/marc.200700581
    [23] ZHONG W B, LIU S M, CHEN X H, et al. High-yield synthe-sis of superhydrophilic polypyrrole nanowire networks[J]. Macromolecules,2006,39(9):3224-3230. doi: 10.1021/ma0525076
    [24] DAI T Y, YANG X M, LU Y. Controlled growth of polypyrrole nanotubule/wire in the presence of a cationic surfactant[J]. Nanotechnology,2006,17(12):3028-3034. doi: 10.1088/0957-4484/17/12/036
    [25] 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84. doi: 10.13801/j.cnki.fhclxb.201501.003

    CHI Xiaohong, YU Li, ZHENG Jie, et al. Crystal morphology and electrical dendronization characteristics of montmorillonite/polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(1):76-84(in Chinese). doi: 10.13801/j.cnki.fhclxb.201501.003
    [26] 钟琼霞, 兰莉, 吴建东, 等. 交联副产物对交联聚乙烯中空间电荷行为的影响[J]. 中国电机工程学报, 2015, 35(11):2903-2910.

    ZHONG Qiongxia, LAN Li, WU Jiandong, et al. The influence of cross-linked by-products on space charge behaviour in XLPE[J]. Proceedings of the CSEE,2015,35(11):2903-2910(in Chinese).
    [27] ZHANG L, ZHOU Y X, CUI X Y, et al. Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(4):1554-1564. doi: 10.1109/TDEI.2014.004361
    [28] ZHANG C C, WANG T T, SUN W F, et al. Grafting of antioxidant onto polyethylene to improve DC dielectric and thermal aging properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2021,28(2):541-549. doi: 10.1109/TDEI.2020.009261
    [29] 易姝慧, 王亚林, 彭庆军, 等. 温度对交联聚乙烯中的空间电荷积累以及迁移的影响[J]. 中国电机工程学报, 2017, 37(19):5796-5803, 5857. doi: 10.13334/J.0258-8013.PCSEE.161356

    YI Shuhui, WANG Yalin, PENG Qingjun, et al. Effect of temperature on charge accumulation and migration in cross-linked polyethylene[J]. Proceedings of the CSEE,2017,37(19):5796-5803, 5857(in Chinese). doi: 10.13334/J.0258-8013.PCSEE.161356
    [30] DU B X, HAN C L, LI J, et al. Temperature-dependent DC conductivity and space charge distribution of XLPE/GO nanocomposites for HVDC cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(2):418-426. doi: 10.1109/TDEI.2019.008428
    [31] DU B X, HOU Z H, LI J, et al. Effect of graphene nanoplatelets on space charge and breakdown strength of PP/ULDPE blends for HVDC cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(6):2405-2412. doi: 10.1109/TDEI.2018.007271
    [32] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3):1-12. doi: 10.19595/j.cnki.1000-6753.tces.2011.03.001

    TIAN Fuqiang, YANG Chun, HE Lijuan, et al. Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society,2011,26(3):1-12(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.2011.03.001
    [33] TANAKA T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12:914-928. doi: 10.1109/TDEI.2005.1522186
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  394
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-07-07
  • 录用日期:  2022-07-28
  • 网络出版日期:  2022-08-09
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回