留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用

王婷婷 王金清 岳铭强 范增杰 杨生荣

王婷婷, 王金清, 岳铭强, 等. 负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用[J]. 复合材料学报, 2021, 38(9): 3016-3025 doi: 10.13801/j.cnki.fhclxb.20201214.002
引用本文: 王婷婷, 王金清, 岳铭强, 等. 负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用[J]. 复合材料学报, 2021, 38(9): 3016-3025 doi: 10.13801/j.cnki.fhclxb.20201214.002
Tingting WANG, Jinqing WANG, Mingqiang YUE, Zengjie FAN, Shengrong YANG. Preparation and application of sodium alginate hydrogel film loaded with nano-silver/graphene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3016-3025. doi: 10.13801/j.cnki.fhclxb.20201214.002
Citation: Tingting WANG, Jinqing WANG, Mingqiang YUE, Zengjie FAN, Shengrong YANG. Preparation and application of sodium alginate hydrogel film loaded with nano-silver/graphene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3016-3025. doi: 10.13801/j.cnki.fhclxb.20201214.002

负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用

doi: 10.13801/j.cnki.fhclxb.20201214.002
基金项目: 国家自然科学基金(51975562)
详细信息
    通讯作者:

    杨生荣,硕士,研究员,博士生导师,研究方向为聚合物复合材料 E-mail:sryang@licp.cas.cn

  • 中图分类号: TB383.2;R318.08

Preparation and application of sodium alginate hydrogel film loaded with nano-silver/graphene composite

  • 摘要: 海藻酸钠(SA)是一种天然高分子聚合物,而纳米银(Ag)具有良好的抗菌性,因此利用二者制备的水凝胶敷料在生物医学领域具有广阔的应用前景。本文首先将Ag纳米颗粒负载于氧化石墨烯(GO)片表面得到Ag/石墨烯复合物(Ag-GO),然后再将其添加到SA中,通过溶胶-凝胶法获得负载Ag-GO的双层海藻酸钠水凝胶薄膜(Ag-GO/SA)。利用FTIR、XRD和SEM等技术对Ag-GO/SA的组成结构和微观形貌进行了表征,并评价了其溶胀性、抗菌性、力学、体外细胞毒性和体内伤口愈合能力等性能。结果表明Ag-GO/SA具有良好的溶胀性、力学强度和抗菌性等性能,与医用纱布相比,Ag-GO/SA可促进SD大鼠的伤口愈合,伤口愈合率高达98%,作为新型伤口敷料具有很大的应用潜力。

     

  • 图  1  Ag-GO1/海藻酸钠(SA) (a)、Ag-GO2/SA (b)、Ag-GO3/SA (c)、Ag-GO4/SA (d) 的外观照片和Ag-GO/SA (e) 的微观结构示意图

    Figure  1.  Appearances of Ag-GO1/sodium alginate (SA) (a), Ag-GO2/SA (b), Ag-GO3/SA (c), Ag-GO4/SA (d) and microstructure (e) of Ag-GO/SA

    图  2  Ag-GO水分散液的光学照片及UV曲线 (a) 以及GO和系列Ag-GO样品的XRD图谱 (b)

    Figure  2.  Optical images and UV absorption spectra of various aqueous dispersions of GO and Ag-GO (a) , and XRD patterns of GO and series of Ag-GO samples (b)

    图  3  Ag-GO1 (a)、Ag-GO2 (b)、Ag-GO3 (c) 、Ag-GO4 (d) 的TEM图像和对应的EDS图谱

    Figure  3.  TEM images and EDS spectra of Ag-GO 1 (a), Ag-GO2 (b), Ag-GO3 (c) and Ag-GO4 (d)

    图  4  Ag-GO/SA的SEM图像:表面 (a)、断面 (b)、放大断面 (c) 及放大断面所对应的Ag元素的Mapping图 (d)

    Figure  4.  SEM images of Ag-GO/SA: Surface (a), cross-section (b), enlarged cross-section (c) and the Ag element mapping (d) of the corresponding enlarged cross-section

    图  5  Ag-GO/SA的FTIR图谱 (a)、XRD图谱 (b) 和TGA曲线 (c)

    Figure  5.  FTIR spectra (a), XRD patterns (b) and TGA curves (c) of Ag-GO/SA samples

    图  6  Ag-GO/SA系列样品的溶胀性能 (a)、凝胶分数 (b) 和MTT测试结果(c)

    Figure  6.  Swelling property (a), gel fraction (b) and MTT results (c) of Ag-GO/SA samples

    图  7  Ag-GO/SA分别对抗E.coli (a) 和S.aureas (b) 的抑菌环实验结果

    Figure  7.  Antibacterial loop experiments of Ag-GO/SA samples against E.coli (a) and S.aureas (b)

    图  8  Ag-GO/SA的拉伸应力-应变曲线 (a),杨氏模量和断裂伸长率 (b)

    Figure  8.  Tensile stress-strain curves (a), Young’s modulus and elongation at break (b) of Ag-GO/SA

    图  9  Ag-GO/SA3的体内伤口愈合实验结果

    Figure  9.  In-vivo wound healing results of Ag-GO/SA3 sample

    图  10  H&E染色的皮肤组织切片的显微照片

    Figure  10.  Micrographs of H & E-stained skin tissue section

    表  1  不同质量比的Ag-氧化石墨烯(GO)复合物所加AgNO3和GO的质量

    Table  1.   Amounts of AgNO3 and graphene (GO) needed for preparation of Ag-GO composites with different mass ratios

    SampleAgNO3/gGO/g
    Ag-GO1 0.1 0.025
    Ag-GO2 0.1 0.05
    Ag-GO3 0.1 0.1
    Ag-GO4 0.1 0.2
    下载: 导出CSV
  • [1] PEREIRA R, TOJEIRA A, VAZ D C, et al. Preparation and characterization of films based on alginate and aloe vera[J]. International Journal of Polymer Analysis and Characterization,2011,16(7):449-464.
    [2] DODERO A, SCARFI S, POZZOLINI M, et al. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: Biological, mechanical, and physicochemical characterization[J]. ACS Applied Materials & Interfaces,2020,12:3371-3381.
    [3] CHEN K, WANG F Y, LIU S Y, et al. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property[J]. International Journal of Biological Macromolecules,2020,148:501-509.
    [4] CIOBANU B C, CADINOIU A N, POPA M, et al. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels[J]. Materials Science & Engineering C-Materials for Biological Applications,2014,43:383-391.
    [5] CHI J J, ZHANG X X, CHEN C, et al. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing[J]. Bioactive Materials,2020,5(2):253-259.
    [6] QUADRADO R F N, FAJARDO A R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems[J]. Arabian Journal of Chemistry,2020,13(1):2183-2194.
    [7] RAKHSHAEI R, NAMAZI H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel[J]. Materials Science & Engineering C-Materials for Biological Applications,2017,73:456-464.
    [8] WANG F, ZHANG Q, HUANG K X, et al. Preparation and characterization of carboxymethyl cellulose containing quaternized chitosan for potential drug carrier[J]. International Journal of Biological Macromolecules,2020,154:1392-1399.
    [9] KONERU A, DHARMALINGAM K, ANANDALAKSHMI R. Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications[J]. International Journal of Biological Macromolecules,2020,148:833-842.
    [10] SUN J Y, ZHAO X H, IIIEPERUMA W K, et al. Highly stretchable and tough hydrogels[J]. Nature,2012,489(7414):133-136.
    [11] LEE K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science,2012,37(1):106-126.
    [12] LIU H, WANG Y Q, YU Y, et al. Simple fabrication of inner chitosan-coated alginate hollow microfiber with higher stability[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2019,107(8):2527-2536.
    [13] WANG T T, WANG J Q, WANG R, et al. Preparation and properties of ZnO/sodium alginate bi-layered hydrogel films as novel wound dressings[J]. New Journal of Chemistry,2019,43:8684-8693.
    [14] 宋文山, 王园园, 杜芬, 等. 鱼皮胶原蛋白-壳聚糖复合海藻酸盐水凝胶敷料对烧烫伤创面的促愈合作用[J]. 中国海洋药物, 2019, 6, 38(3):1-6.

    SONG W S, WANG Y Y, DU F, et al. Effect of fish skin collagen-chitosan compound alginate gel dressing on promoting hearing of burn and scald wound[J]. Chinese Journal of Marine Drugs,2019,6, 38(3):1-6(in Chinese).
    [15] YANG J S, ZHENG H C, HAN S Y, et al. The synthesis of nano-silver/sodium alginate composites and their antibacterial properties[J]. RSC Advances,2015,5(4):2378-2382.
    [16] GAO S P, GE W, ZHAO C Q, et al. Novel conjugated Ag@PNIPAM nanocomposites for an effective antibacterial wound dressing[J]. RSC Advances,2015,5(33):25870-25876.
    [17] CHEN Y Q, CHEN L B, BAI H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A,2013,1(6):1992-2001.
    [18] CONG H P, WANG P, YU S H, et al. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design[J]. Chemistry of Materials,2013,25(16):3357-3362.
    [19] XU C, WANG X. Fabrication of flexible metal nanoparticle films using graphene oxide sheets as substrates[J]. Small,2009,5(19):2212-2217.
    [20] DE FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B: Biointerfaces,2014,113:115-124.
    [21] FAN Z J, LIU B, WANG J Q, et al. A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing[J]. Advanced Function Material,2014,24(25):3933-3943.
    [22] YAN X, LI F, HU K D, et al. Nacre-mimic reinforced Ag@ reduced graphene oxide-sodium alginate composite film for wound healing[J]. Scientific Reports,2017,7(13851):1-10.
    [23] LI P J, OHTSUKI C, KOKUBO T, et al. Apatite formation induced by silica gel in a simulated body fluid[J]. Journal of the American Ceramic Society,1992,75(8):2094-2097.
    [24] 黄剑锋. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005: 38.

    HUANG J F. Sol-gel principle and technology[M]. Beijing: Chemical Industry Press, 2005: 38(in Chinese).
    [25] 中国国家标准化管理委员会. 医疗器械生物学评价第5部分: 体外细胞毒性试验: GB/T 16886.5—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Biological evaluation of medical devices-Part 5: Test for in vitro cytotoxicity: GB/T 16886.5—2017[S], Beijing: China Standards Press, 2017(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  95
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-12-03
  • 网络出版日期:  2020-12-14
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回