留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青稞秸秆灰-氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征

曹锋 乔宏霞 李双营 赵紫岩 舒修远 崔丽君

曹锋, 乔宏霞, 李双营, 等. 青稞秸秆灰-氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征[J]. 复合材料学报, 2023, 40(5): 2972-2987. doi: 10.13801/j.cnki.fhclxb.20220629.003
引用本文: 曹锋, 乔宏霞, 李双营, 等. 青稞秸秆灰-氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征[J]. 复合材料学报, 2023, 40(5): 2972-2987. doi: 10.13801/j.cnki.fhclxb.20220629.003
CAO Feng, QIAO Hongxia, LI Shuangying, et al. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2972-2987. doi: 10.13801/j.cnki.fhclxb.20220629.003
Citation: CAO Feng, QIAO Hongxia, LI Shuangying, et al. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2972-2987. doi: 10.13801/j.cnki.fhclxb.20220629.003

青稞秸秆灰-氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征

doi: 10.13801/j.cnki.fhclxb.20220629.003
基金项目: 国家自然科学基金(51868044);青海省基础研究计划项目(2022-ZJ-921)
详细信息
    通讯作者:

    乔宏霞,博士,教授,研究方向为氯氧镁水泥的性能调控 E-mail: qhxlut7706@163.com

  • 中图分类号: TU528;TB332

Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage

Funds: National Natural Science Foundation of China (51868044); Basic Research Program of Qinghai Province (2022-ZJ-921)
  • 摘要: 为探究掺入青稞秸秆灰(HBSA)对氯氧镁水泥(MOC)的耐久性能与孔隙结构的影响,采用HBSA来改善MOC的耐久性能,制备青稞秸秆灰-氯氧镁水泥复合材料。对不同HBSA掺量的氯氧镁水泥砂浆(MOCM)分别在盐湖卤水侵蚀、冻融循环侵蚀及盐冻耦合侵蚀条件下的耐久性能进行研究,采用相对质量评价参数、相对动弹性模量评价参数及相对抗压强度评价参数3种耐久性评价指标来反映MOCM的耐久性能劣化规律,并确定HBSA的最佳掺量。通过表观形貌分析及孔隙结构测试,揭示不同侵蚀环境下MOCM的耐久性损伤劣化程度及孔隙结构特征。结果表明:冻融循环侵蚀对MOCM造成的耐久性损伤程度比盐卤侵蚀及盐冻耦合侵蚀更严重,MOCM试件表面产生了更多的宏观裂缝。HBSA掺入能够显著改善MOCM的耐久性能。当HBSA掺量为10wt%时,MOCM在盐湖卤水侵蚀、冻融循环侵蚀及盐冻耦合侵蚀条件下的耐久性能分别比未掺HBSA时提高了21.24%、23.48%和18.91%。掺入10wt%HBSA的MOCM的开口孔隙率减小,比表面积增大,最可几孔径和平均孔径减小,细化了MOCM的孔隙结构,提高了耐久性能。

     

  • 图  1  青稞秸秆灰(HBSA)的制备与表征:(a) 制备工艺;(b) SEM图像;(c) XRD图谱;(d) 粒径分布

    Figure  1.  Preparation and characterization of highland barley straw ash (HBSA): (a) Preparation process; (b) SEM image; (c) XRD pattern; (d) Particle size distribution

    图  2  盐卤侵蚀环境HBSA-MOCM的耐久性评价参数

    Figure  2.  Durability evaluation parameters of HBSA-MOCM in salt lake brine erosion environment

    图  3  冻融循环侵蚀环境HBSA-MOCM的耐久性评价参数

    Figure  3.  Durability evaluation parameters of HBSA-MOCM in freeze-thaw cycle erosion environment

    图  4  盐冻耦合侵蚀环境HBSA-MOCM的耐久性评价参数

    Figure  4.  Durability evaluation parameters of HBSA-MOCM in salt-frozen coupling erosion environment

    图  5  不同侵蚀条件下HBSA-MOCM的表观形貌

    Figure  5.  Apparent morphologies of HBSA-MOCM under different erosion conditions

    图  6  不同HBSA掺量的MOCM的开口孔隙率

    Figure  6.  Opening porosities of MOCM with different HBSA contents

    图  7  HBSA-MOCM的吸脱附曲线

    Figure  7.  Adsorption-desorption curves of HBSA-MOCM

    图  8  HBSA-MOCM的比表面积拟合关系

    Q—Gas adsorption capacity; p0—Saturation pressure of the gas; p—Gas pressure in equilibrium with the sample

    Figure  8.  Fitting relationships of specific surface area of HBSA-MOCM

    图  9  HBSA-MOCM的较小孔径分布(≤10 nm)

    dV/dD—Differential of pore volume

    Figure  9.  Smaller pore diameter distribution of HBSA-MOCM (≤10 nm)

    图  10  HBSA-MOCM的较大孔径分布(>10 nm)

    Figure  10.  Larger pore diameter distribution of HBSA-MOCM (>10 nm)

    图  11  HBSA-MOCM的累计孔隙体积和累积孔隙表面积

    Figure  11.  Cumulative pore volume and cumulative pore surface area of HBSA-MOCM

    图  12  HBSA-MOCM的SEM图像

    Figure  12.  SEM images of HBSA-MOCM

    表  1  HBSA的化学成分

    Table  1.   Chemical compositions of HBSA wt%

    SiO2CaOSO3MgOAl2O3Fe2O3K2ONa2OP2O5Others
    61.7510.631.752.045.923.835.312.605.720.44
    下载: 导出CSV

    表  2  HBSA-氯氧镁水泥砂浆(MOCM)的配合比

    Table  2.   Mix ratios of HBSA-magnesium oxychloride cement mortar (MOCM) (kg/m3)

    MgOMgCl2SandSuperplasticizerWater repellentWaterHBSA
    583.4 221.7 937.5 16.0 6.9 203.4 0
    211.7 29.2
    220.0 58.3
    228.4 87.5
    236.7 116.7
    253.2 175.0
    下载: 导出CSV

    表  3  HBSA-MOCM试件的编号

    Table  3.   Specimen number of HBSA-MOCM

    Specimen numberCycleHBSA/wt%Specimen numberCycleHBSA/wt%
    0%HBSA-MOCM(N0) 0010%HBSA-MOCM(N0)
    010
    0%HBSA-MOCM(S60)60010%HBSA-MOCM(S60)6010
    0%HBSA-MOCM(F60)60010%HBSA-MOCM(F60)6010
    0%HBSA-MOCM(SF60)60010%HBSA-MOCM(SF60)6010
    Notes: N stands for the specimen without erosion; S represents the specimen eroded by salt lake brine; F represents the specimen eroded by freeze-thaw cycle; SF represents the specimen eroded by salt-frozen coupling.
    下载: 导出CSV

    表  4  盐湖卤水的主要离子浓度 (g/L)

    Table  4.   Concentration of main ions in salt lake brine (g/L)

    K++Na+Ca2+Mg2+ClSO42−HCO3TDSpH
    83.2552.7852.71128.22137.600.12457.687.60
    Note: TDS—Total soluble solid content in salt lake brine.
    下载: 导出CSV

    表  5  HBSA-MOCM的比表面积计算结果

    Table  5.   Calculation results of specific surface area of HBSA-MOCM

    Specimen numberVm/(cm3·g−1)CSSA/(m2·g−1)Specimen numberVm/(cm3·g−1)CSSA/(m2·g−1)
    0%HBSA-MOCM(N0) 2.04 86.60 8.88 10%HBSA-MOCM(N0) 2.97 95.34 12.93
    0%HBSA-MOCM(S60) 1.24 66.19 5.40 10%HBSA-MOCM(S60) 1.80 159.03 7.41
    0%HBSA-MOCM(F60) 0.21 66.44 0.92 10%HBSA-MOCM(F60) 0.86 48.25 3.73
    0%HBSA-MOCM(SF60) 0.53 71.57 2.33 10%HBSA-MOCM(SF60) 0.97 227.62 4.23
    Notes: Vm—Amount of gas required to complete monolayer adsorption on the surface; C—Constant; SSA—Specific surface area.
    下载: 导出CSV

    表  6  HBSA-MOCM试件的各类孔径测试结果

    Table  6.   Test results of various pore diameters of HBSA-MOCM specimens nm

    Specimen numberdadbdmdwSpecimen numberdadbdmdw
    0%HBSA-MOCM(N0)3.1316.2112.540.72410%HBSA-MOCM(N0)3.0615.5710.860.722
    0%HBSA-MOCM(S60)3.5217.7815.550.73010%HBSA-MOCM(S60)3.3316.6611.230.725
    0%HBSA-MOCM(F60)6.3127.5721.920.74910%HBSA-MOCM(F60)6.1222.6913.720.737
    0%HBSA-MOCM(SF60)3.9621.9517.940.73810%HBSA-MOCM(SF60)3.8820.7912.950.732
    Notes: da—Most probable pore diameter (≤10 nm); db—Most probable pore diameter (>10 nm); dm—Average pore diameter; dw—Average pore width.
    下载: 导出CSV
  • [1] WU D Y, YU L W, GUO L, et al. Effect of highland barley on rheological properties, textural properties and starch digestibility of chinese steamed bread[J]. Foods,2022,11(8):1091-1109. doi: 10.3390/foods11081091
    [2] 白婷, 靳玉龙, 朱明霞, 等. 西藏地区不同青稞品种秸秆饲用品质分析[J]. 饲料工业, 2019, 40(12):59-64. doi: 10.13302/j.cnki.fi.2019.12.011

    BAI Ting, JIN Yulong, ZHU Mingxia, et al. Analysis of feeding quality of highland barley cultivars in Tibet[J]. Feed Industry,2019,40(12):59-64(in Chinese). doi: 10.13302/j.cnki.fi.2019.12.011
    [3] 李海朝, 徐贵钰, 汪航. 青稞秸秆化学成分及纤维形态研究[J]. 生物质化学工程, 2010, 44(2):40-42. doi: 10.3969/j.issn.1673-5854.2010.02.010

    LI Haichao, XU Guiyu, WANG Hang. Research on chemical composition and fiber morphology of barley straw[J]. Biomass Chemical Engineering,2010,44(2):40-42(in Chinese). doi: 10.3969/j.issn.1673-5854.2010.02.010
    [4] OBADI M, QI Y J, XU B. Highland barley starch (Qingke): Structures, properties, modifications, and applications[J]. International Journal of Biological Macromolecules,2021,185:725-738. doi: 10.1016/j.ijbiomac.2021.06.204
    [5] ZHANG T W, WANG Q, LI J R, et al. Study on the origin traceability of Tibet highland barley (Hordeum vulgare L) based on its nutrients and mineral elements[J]. Food Chemistry,2021,346:128928.
    [6] TOOPER B, CARTZ L. Structure and formation of magnesium oxychloride sorel cements[J]. Nature,1966,211:64-66. doi: 10.1038/211064a0
    [7] LI K, WANG Y S, YAO N N, et al. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance[J]. Construction and Building Materials,2020,255:119381. doi: 10.1016/j.conbuildmat.2020.119381
    [8] LI R Q, LIU C L, JIAO P C, et al. The present situation, existing problems, and countermeasures for exploitation and utilization of low-grade potash minerals in Qarhan Salt Lake, Qinghai Province, China[J]. Carbonates Evaporites,2020,35(10):128-145.
    [9] 肖学英, 郑卫新, 黄青, 等. 抗腐性氯氧镁水泥混凝土在高寒、高盐渍地区的研究及应用[J]. 盐湖研究, 2018, 26(3):7-13.

    XIAO Xueying, ZHENG Weixin, HUANG Qing, et al. Study and application of anti-corrosion magnesium oxychloride cement concrete in high cold and high salinity areas[J]. Journal of Salt Lake Research,2018,26(3):7-13(in Chinese).
    [10] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research,2018,114:2-26.
    [11] 王健, 肖俊华, 左迎峰, 等. 秸秆/氯氧镁水泥无机轻质复合材料制备与性能[J]. 复合材料学报, 2018, 35(11):3162-3171.

    WANG Jian, XIAO Junhua, ZUO Yingfeng, et al. Preparation and properties of straw/magnesium oxychloride cement inorganic light mass composites[J]. Acta Materiae Compositae Sinaca,2018,35(11):3162-3171(in Chinese).
    [12] AVANISH S, RAKESH K, PANKAJ G. Factors influencing strength of magnesium oxychloride cement[J]. Construction and Building Materials,2021,303:124571.
    [13] GUO Y Y, ZHANG Y X, SOE K. Effect of sodium monofluorophosphate and phosphates on mechanical properties and water resistance of magnesium oxychloride cement[J]. Cement and Concrete Composites,2022,129:104472.
    [14] 李学梅, 王继辉, 翁睿, 等. EVA乳胶液对纤维增强氯氧镁水泥界面性能的影响[J]. 复合材料学报, 2003(4):67-71.

    LI Xuemei, WANG Jihui, WENG Rui, et al. Effect of EVA emulsoid on the interfacial strength of the glass fiber reinforced magnesium oxychloride cement composites[J]. Acta Materiae Compositae Sinaca,2003(4):67-71(in Chinese).
    [15] HUANG Q, ZHENG W X, XIAO X Y, et al. A study on the salt attack performance of magnesium oxychloride cement in different salt environments[J]. Construction and Building Materials,2022,320:126224.
    [16] YAN Z B, YANG P W, HUANG J X, et al. Promoting effect and mechanism of several inorganic salts on hydration reaction of magnesium oxychloride cement at low tempera-ture[J]. Construction and Building Materials,2022,317:126171.
    [17] ZHONG D Q, WANG S G, GAO Y, et al. Experimental study on freeze-thaw resistance of modified magnesium oxychloride cement foam concrete[J]. Journal of Physics: Conference Series,2021,1885:032009.
    [18] HUANG Q, WEN J, LI Y, et al. The effect of silica fume on the durability of magnnesium oxychloride cement[J]. Ceramics-Silikáty,2019,63(3):338-346.
    [19] ZHONG D Q, WANG S G, GAO Y, et al. Influence of rubber powder modification methods on the mechanical and durability properties of rubberized magnesium oxychloride cement[J]. Crystals,2021,11:1323-1336.
    [20] MA C, CHEN G G, GAO L, et al. Effects and mechanisms of waste gypsum influencing the mechanical properties and durability of magnesium oxychloride cement[J]. Journal of Cleaner Production,2022,339:130679.
    [21] CAO F, QIAO H X, LI Y K, et al. Effect of highland barley straw ash admixture on properties and microstructure of concrete[J]. Construction and Building Materials,2022,315:125802.
    [22] 曹锋, 谭镇, 乔宏霞, 等. 青稞秸秆灰掺入氯氧镁水泥中的活性与作用机理[J]. 功能材料, 2021, 52(12):12196-12202, 12209.

    CAO Feng, TAN Zhen, QIAO Hongxia, et al. Activity and mechanism of highland barley straw ash added into magnesium oxychloride cement[J]. Journal of Functional Materials,2021,52(12):12196-12202, 12209(in Chinese).
    [23] WANG J J, LIU E G. Upcycling waste seashells with cement: Rheology and early-age properties of portland cement paste[J]. Resources, Conservation & Recycling,2020,155(C):104680.
    [24] XIE J H, HUANG L, GUO Y C, et al. Experimental study on the compressive and flexural behaviour of recycled aggre-gate concrete modified with silica fume and fibres[J]. Construction and Building Materials,2018,178:612-623.
    [25] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of basic properties of construction mortar: JGJ/T 70—2009[S]. Beijing: China Building Industry Press, 2009(in Chinese).
    [26] 乔宏霞, 麻红卫, 王金磊, 等. 干燥和浸水环境下基于无损检测方法的镁水泥砼最佳配合比研究[J]. 硅酸盐通报, 2017, 36(4):1258-1265.

    QIAO Hongxia, MA Hongwei, WANG Jinlei, et al. Optimum mix ratio of magnesium cement concrete based on nondestructive testing method under different environment[J]. Bulletin of the Chinese Ceramic Society,2017,36(4):1258-1265(in Chinese).
    [27] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of concrete physical and mechanical properties: GB/T 50081[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [28] MANTELLATO S, PALACIONS M, FLATT R J. Reliable specific surface area measurements on anhydrous cements[J]. Cement and Concrete Research,2015,67:286-291.
    [29] 中国国家标准化管理委员会. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第2部分: 气体吸附法分析介孔和大孔: GB/T 21650.2[S]. 北京: 中国建筑工业出版社, 2008.

    Standardization Administration of China. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2: Analysis of mesopores and macropores by gas adsorption: GB/T 21650.2[S]. Beijing: China Building Industry Press, 2008(in Chinese).
    [30] PANG Y, WANG S, YAO X Y, et al. Evaluation of gas adsorption in nanoporous shale by simplified local density model integrated with pore structure and pore size distribution[J]. Langmuir,2022,38:3641-3655.
    [31] 陈金妹, 谈萍, 王建永. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业, 2011, 21(2):45-49.

    CHEN Jinmei, TAN Ping, WANG Jianyong. Characterization of pore structure and specific surface area based on gas adsorption applied for porous materials[J]. Powder Metallurgy Industry,2011,21(2):45-49(in Chinese).
    [32] WANG J, LIU M, WANG Y, et al. Synergistic effects of nano-silica and fly ash on properties of cement-based compo-sites[J]. Construction and Building Materials,2020,262:120737.
    [33] BERNARD E, LOTHENBACH B, CHLIQUE C, et al. Characterization of magnesium silicate hydrate (M-S-H)[J]. Cement and Concrete Research,2019,116:309-330.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  342
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-06-10
  • 录用日期:  2022-06-15
  • 网络出版日期:  2022-06-30
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回