快速等离子体制备合金负载多孔钙钛矿催化剂及其光热CO2还原性能

Rapid synthesis of alloy-supported porous perovskite catalyst by plasma for photothermal CO2 reduction

  • 摘要: 金属-半导体异质结材料因其独特的电子结构和界面效应,在光热催化还原CO2领域已广泛应用。作为一种制备该类材料的方法,原位出溶技术能够使金属离子从钙钛矿晶格内向表面迁移,形成牢固锚定于表面的纳米颗粒,进而获得性能卓越且化学性质稳定的催化剂,因此在近年来备受瞩目。然而传统出溶技术需要在高温下进行,耗时耗能且易导致催化剂颗粒团聚长大。本研究采用介质阻挡放电(DBD)等离子体技术处理La0.43Ca0.37Ti0.86Ni0.08Cu0.06O3-δ,在常温下Cu、Ni离子从晶格中快速出溶,形成了合金负载多孔钙钛矿的复合材料LCTNC-pl。在光热协同作用下,LCTNC-pl在逆水煤气变换(RWGS)反应中展现出优异的催化活性:400℃光照条件下,CO选择性为97.29%,产率达到3.15 mmol·g−1·h−1,较La0.43Ca0.37TiO3-δ’ 提升了10倍。催化性能的增强归因于等离子体处理后催化剂表面活性位点的增多,以及金属-半导体异质结对光生电荷的有效调控。本研究提出的快速等离子体法制备金属-半导体异质结材料具有高效、快捷、低能耗等优点,为开发高性能光热催化剂提供了一种新的思路。

     

    Abstract: Metal-semiconductor heterostructured materials have been extensively utilized in the photothermal reduction of CO2 due to their unique electronic structure and interfacial effect. As a method for preparing such materials, the in-situ exsolution technique involves the precipitation of metal ions from the perovskite lattice, forming nanoparticles anchored on the surface. The resultant catalyst is highly performant and stable, gaining recent attention. However, traditional exsolution is conducted at high temperatures, consuming much time and energy and may cause particle agglomeration. In this research, we adopted dielectric barrier discharge (DBD) for the rapid plasma-driven exsolution of La0.43Ca0.37Ti0.86Ni0.08Cu0.06O3-δ at room temperature, yielding a composite of alloy-supported porous perovskite (LCTNC-pl). Under photothermal conditions, LCTNC-pl presented boosted reverse water gas shift reaction (RWGS) performance, with a CO selectivity of 97.29% and a gas evolution rate of 3.15 mmol·g−1·h−1 at 400℃, 10 times higher than La0.43Ca0.37TiO3-δ’. This enhancement stems from the increased active sites induced by plasma and the regulation of the photogenerated charge by the metal-semiconductor heterojunction. Our work demonstrates a rapid and simple method for synthesizing heterostructure with high-performance photothermal catalytic activity.

     

/

返回文章
返回