留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaNbO3@g-C3N4复合材料的可控构筑及其压电光催化性能

孙术博 于海瀚 李强 葛慎光 姜葱葱 王丹 张丽娜 程新 高超民

孙术博, 于海瀚, 李强, 等. NaNbO3@g-C3N4复合材料的可控构筑及其压电光催化性能[J]. 复合材料学报, 2023, 40(3): 1534-1540. doi: 10.13801/j.cnki.fhclxb.20220415.001
引用本文: 孙术博, 于海瀚, 李强, 等. NaNbO3@g-C3N4复合材料的可控构筑及其压电光催化性能[J]. 复合材料学报, 2023, 40(3): 1534-1540. doi: 10.13801/j.cnki.fhclxb.20220415.001
SUN Shubo, YU Haihan, LI Qiang, et al. Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1534-1540. doi: 10.13801/j.cnki.fhclxb.20220415.001
Citation: SUN Shubo, YU Haihan, LI Qiang, et al. Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1534-1540. doi: 10.13801/j.cnki.fhclxb.20220415.001

NaNbO3@g-C3N4复合材料的可控构筑及其压电光催化性能

doi: 10.13801/j.cnki.fhclxb.20220415.001
基金项目: 国家自然科学基金(51872121;22104043;51902129);泰山学者攀登计划项目;济南市“一事一议”顶尖人才项目;济南市“高校20条”项目 (2018 GXRC001);“111”计划项目—先进水泥基材料创新引智基地(D17001)
详细信息
    通讯作者:

    张丽娜,博士,副教授,硕士生导师,研究方向为功能纳米材料可控制备及其光催化应用 E-mail: mse_zhangln@ujn.edu.cn

    高超民,博士,副教授,硕士生导师,研究方向为功能纳米材料可控制备及其光电转换应用 E-mail: chm_gaocm@163.com

  • 中图分类号: O611;O643

Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties

Funds: National Natural Science Foundation of China (51872121; 22104043; 51902129); Taishan Scholars Program; Case-by-Case Project for Top Outstanding Talents of Jinan; Project of "20 Items of University" of Jinan (2018 GXRC001); 111 Project of International Corporation on Advanced Cement-based Materials (D17001)
  • 摘要: 促进光催化过程中载流子的高效分离一直是困扰科研人员的难题。最近,利用压电效应抑制光生电子-空穴对复合从而提升光催化效率的策略引起了人们的广泛关注。在此,以制备的由g-C3N4包覆的一维NaNbO3纳米棒异质结材料作为研究对象,通过施加超声场引入压电效应,研究其在压电光催化过程中的性能增强机制。通过SEM及XPS等表征手段对材料的微观形貌和键合情况进行了考察。性能实验结果表明:在利用超声波引入压电效应后,NaNbO3@g-C3N4在压电光催化过程中(1.02 mmol·g−1·h−1)表现出比单一的光催化过程(0.49 mmol·g−1·h−1)更高的产氢速率,表明压电效应可极大促进NaNbO3@g-C3N4异质结材料在光催化过程中的载流子分离效率,抑制光生电子与空穴复合,提高其光催化性能。此外,在数据分析的基础上,本文提出了压电-光催化协同作用的机制,为高效压电光催化剂的设计和开发提供了参考。

     

  • 图  1  (a) NaNbO3样品的SEM图像;(b) 石墨氮化碳(g-C3N4)的SEM图像;((c)~(d)) NaNbO3@g-C3N4的SEM图像

    Figure  1.  (a) SEM image of NaNbO3 sample; (b) SEM image of graphite carbon nitride (g-C3N4); ((c)-(d)) SEM images of NaNbO3@g-C3N4

    图  2  NaNbO3、g-C3N4和NaNbO3@g-C3N4的漫反射图谱

    Figure  2.  Diffuse reflection spectra of NaNbO3, g-C3N4 and NaNbO3@g-C3N4

    图  3  g-C3N4与NaNbO3@g-C3N4的光致发光图谱

    Figure  3.  Photoluminescence spectra of g-C3N4 and NaNbO3@g-C3N4

    图  4  NaNbO3@g-C3N4的Nb3d (a)、O1s (b)、C1s (c) 和N1s (d) 高分辨XPS图谱

    Figure  4.  High resolution XPS spectra of Nb3d (a), O1s (b), C1s (c) and N1s (d) of NaNbO3@g-C3N4

    图  5  不同超声功率下NaNbO3的催化性能 (a) 和对应的产氢速率 (b)

    Figure  5.  Catalytic performance (a) of NaNbO3 under different ultrasonic power and corresponding H2 evolution rate (b)

    图  6  NaNbO3@g-C3N4与NaNbO3在纯光条件下 (a) 和压电光催化条件下 (b) 的产氢实验;NaNbO3 (c) 与NaNbO3@g-C3N4 (d)分别在纯光与压电光催化条件下的产氢速率图

    Figure  6.  H2 evolution experiments of NaNbO3@g-C3N4 and NaNbO3 under light conditions (a) and piezo-photocatalytic conditions (b); H2 evolution rates of NaNbO3 (c) and NaNbO3@g-C3N4 (d) under light and piezo-photocatalytic conditions, respectively

    图  7  NaNbO3@g-C3N4的稳定性测试结果

    Figure  7.  Stability test results of NaNbO3@g-C3N4

    图  8  NaNbO3@g-C3N4的压电光催化协同作用机制图及其电子-空穴分离示意图

    Figure  8.  Schematic diagram of the piezo-photocatalytic coupling effect mechanism of NaNbO3@g-C3N4 and its electron-hole separation

    CB—Conduction band; VB—Valence band

  • [1] KHAN S U, AL-SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245. doi: 10.1126/science.1075035
    [2] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271. doi: 10.1126/science.1061051
    [3] GAO C, WEI T, ZHANG Y, et al. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J]. Advanced Materials,2019,31(8):e1806596. doi: 10.1002/adma.201806596
    [4] YANG Y, ZHANG Y, FANG Z, et al. Simultaneous realization of enhanced photoactivity and promoted photostability by multilayered MoS2 coating on CdS nanowire structure via compact coating methodology[J]. ACS Applied Materials & Interfaces,2017,9(8):6950-6958.
    [5] ZHANG J, WANG Y, JIN J, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires[J]. ACS Applied Materials & Interfaces,2013,5(20):10317-10324.
    [6] ZHONG Y, SHAO Y, MA F, et al. Band-gap-matched CdSe QD/WS2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting[J]. Nano Energy,2017,31:84-89. doi: 10.1016/j.nanoen.2016.11.011
    [7] WANG Z L. Piezotronic and piezophototronic effects[J]. The Journal of Physical Chemistry Letters,2010,1(9):1388-1393. doi: 10.1021/jz100330j
    [8] KUMAR D, SHARMA S, KHARE N. Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity[J]. Renewable Energy,2021,163:1569-1579. doi: 10.1016/j.renene.2020.09.132
    [9] ZHANG S C, ZHANG B, CHEN D, et al. Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system[J]. Nano Energy,2021,79:105485. doi: 10.1016/j.nanoen.2020.105485
    [10] SINGH S, KHARE N. Flexible PVDF/Cu/PVDF-NaNbO3 photoanode with ferroelectric properties: An efficient tuning of photoelectrochemical water splitting with electric field polarization and piezophototronic effect[J]. Nano Energy,2017,42:173-180. doi: 10.1016/j.nanoen.2017.10.061
    [11] XU H, LIU C T, LI H M, et al. Synthesis, characterization and photocatalytic activity of NaNbO3/ZnO heterojunction photocatalysts[J]. Journal of Alloys and Compounds,2011,509(37):9157-9163. doi: 10.1016/j.jallcom.2011.06.100
    [12] JI S Z, LIU H, SANG Y H, et al. Synthesis, structure, and piezoelectric properties of ferroelectric and antiferroelectric NaNbO3 nanostructures[J]. Crystengcomm,2014,16(32):7598-7604. doi: 10.1039/C4CE01116C
    [13] SINGH S, KHARE N. Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst[J]. Nano Energy,2017,38:335-341. doi: 10.1016/j.nanoen.2017.05.029
    [14] 鲁浈浈, 张琪, 栗思琪. CdS-石墨相氮化碳复合光催化剂的制备及其光催化性能[J]. 复合材料学报, 2020, 37(3):662-673.

    LU Z Z, ZHANG Q, LI S Q. Preparation and photocatalytic performance of CdS-graphite phase carbon nitride composite photocatalyst[J]. Acta Materiae Compositae Sinica,2020,37(3):662-673(in Chinese).
    [15] 孙志明, 李雪, 马建宁, 等. 类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2018, 35(6):1558-1565.

    SUN Z M, LI X, MA J N, et al. Preparation of g-C3N4/illite composite and its visible-light-driven photocatalytic activity[J]. Acta Materiae Compositae Sinica,2018,35(6):1558-1565(in Chinese).
    [16] 刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2):628-636.

    LIU Q F, PENG W D, ZHONG C W, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica,2022,39(2):628-636(in Chinese).
    [17] 吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2022, 40(1):323-333.

    WU J B, SHI L, ZHENG X Q, et al. g-C3N4/BiOCl composite photocatalyst was used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compo-sitae Sinica,2022,40(1):323-333(in Chinese).
    [18] ZHANG D D, QI J J, JI H D, et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution[J]. Chemical Engineering Journal,2020,400:125918. doi: 10.1016/j.cej.2020.125918
    [19] YOU H L, MA X X, WU Z, et al. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro-Bi-catalytic dye decomposition of NaNbO3 nanofibers[J]. Nano Energy,2018,52:351-359. doi: 10.1016/j.nanoen.2018.08.004
    [20] YAN L, ZHANG T, LEI W, et al. Catalytic activity of gold nanoparticles supported on KNbO3 microcubes[J]. Catal Today,2014,224:140-146. doi: 10.1016/j.cattod.2013.11.033
    [21] WEI Z, ENDO M, WANG K, et al. Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants[J]. Chemical Engineering Journal,2017,318:121-134. doi: 10.1016/j.cej.2016.05.138
    [22] RADHA R, KUMAR Y R, SAKAR M, et al. Understanding the lattice composition directed in situ structural disorder for enhanced visible light photocatalytic activity in bismuth iron niobate pyrochlore[J]. Applied Catalysis B: Environmental,2018,225:386-396. doi: 10.1016/j.apcatb.2017.12.004
    [23] XUE J, MA S, ZHOU Y, et al. Facile photochemical synthe-sis of Au/Pt/g-C3N4 with plasmon-enhanced photocataly-tic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces,2015,7(18):9630-9637.
  • 加载中
图(8)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  430
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 修回日期:  2022-03-24
  • 录用日期:  2022-04-04
  • 网络出版日期:  2022-04-17
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回