留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坡缕石-Cd0.5Zn0.5S/Zn-Fe LDH复合材料的制备及其光催化性能

胡美凤 唐忠家 文娜 常玥 查飞

胡美凤, 唐忠家, 文娜, 等. 坡缕石-Cd0.5Zn0.5S/Zn-Fe LDH复合材料的制备及其光催化性能[J]. 复合材料学报, 2023, 40(5): 2794-2803. doi: 10.13801/j.cnki.fhclxb.20220705.003
引用本文: 胡美凤, 唐忠家, 文娜, 等. 坡缕石-Cd0.5Zn0.5S/Zn-Fe LDH复合材料的制备及其光催化性能[J]. 复合材料学报, 2023, 40(5): 2794-2803. doi: 10.13801/j.cnki.fhclxb.20220705.003
HU Meifeng, TANG Zhongjia, WEN Na, et al. Preparation of palygorskite-Cd0.5Zn0.5S/Zn-Fe LDH composite and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2794-2803. doi: 10.13801/j.cnki.fhclxb.20220705.003
Citation: HU Meifeng, TANG Zhongjia, WEN Na, et al. Preparation of palygorskite-Cd0.5Zn0.5S/Zn-Fe LDH composite and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2794-2803. doi: 10.13801/j.cnki.fhclxb.20220705.003

坡缕石-Cd0.5Zn0.5S/Zn-Fe LDH复合材料的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20220705.003
基金项目: 国家自然科学基金(21865031)
详细信息
    通讯作者:

    常玥,博士,教授,硕士生导师,研究方向为功能材料的制备及应用 E-mail: cy70@sin.com

  • 中图分类号: O611.3;TB333

Preparation of palygorskite-Cd0.5Zn0.5S/Zn-Fe LDH composite and its photocatalytic performance

Funds: National Natural Science Foundation of China (21865031)
  • 摘要: 为解决Cd0.5Zn0.5S易光腐蚀的缺点,两步水热法制备了坡缕石(PGS)负载Cd0.5Zn0.5S/Zn-Fe 层状双金属氢氧化物(LDH)复合材料(PGS-Cd0.5Zn0.5S/Zn-Fe LDH),通过Zn-Fe LDH和PGS提高光生载流子的分离效率。利用XRD、SEM、TEM、UV-Vis DRS和PL对材料的结构、形貌及光学性能进行了表征。电镜图像显示,片状Zn-Fe LDH表面附着针状PGS与颗粒状Cd0.5Zn0.5S。紫外-可见漫反射光谱表明PGS-Cd0.5Zn0.5S/Zn-Fe LDH吸光区域比Cd0.5Zn0.5S宽,吸收边缘从560 nm红移至605 nm。PGS-Cd0.5Zn0.5S/Zn-Fe LDH在光催化降解结晶紫(CV)中表现出良好的光催化活性,催化活性高于Cd0.5Zn0.5S和Zn-Fe LDH。当PGS 与Cd0.5Zn0.5S/Zn-Fe LDH质量比为50%时,可见光照射60 min, 20 mg PGS-Cd0.5Zn0.5S/Zn-Fe LDH对20 mg/L结晶紫溶液的去除率为97.5%,${\text{•}} {\rm{O}}_2^{-}$、•OH是光催化降解的主要活性物种,且5次循环实验后仍然保持较高活性。此外,制备的复合材料对孔雀石绿(MG)、酸性品红(AF)、罗丹明B(RhB)、甲基橙(MO)、亚甲基蓝(MB)等染料均表现出较好的光降解效果。

     

  • 图  1  50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3、Cd0.5Zn0.5S/Zn-Fe LDH 3、Cd0.5Zn0.5S、Zn-Fe LDH和PGS的XRD图谱

    Figure  1.  XRD patterns of 50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3, Cd0.5Zn0.5S/Zn-Fe LDH 3, Cd0.5Zn0.5S, Zn-Fe LDH and PGS

    图  2  Zn-Fe LDH (a)、Cd0.5Zn0.5S (b)、Cd0.5Zn0.5S/Zn-Fe LDH 3 (c)、PGS (d)和50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3 (e)的SEM图像;50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3的TEM图像((f), (g))及EDS能谱图(h)

    Figure  2.  SEM images of Zn-Fe LDH (a), Cd0.5Zn0.5S (b), Cd0.5Zn0.5S/Zn-Fe LDH 3 (c), PGS (d) and 50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3 (e); TEM images ((f), (g)) and EDS spectrum (h) of 50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3

    图  3  不同光催化材料的紫外-可见漫反射光谱(a)和相应的禁带宽度图(b)

    α—Absorption coefficient; —Photon energy

    Figure  3.  UV-vis DRS (a) and band gap diagram (b) of different materials

    图  4  Zn-Fe LDH、Cd0.5Zn0.5S、Cd0.5Zn0.5S/Zn-Fe LDH及50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3的光致发光光谱

    Figure  4.  PL spectra of Zn-Fe LDH, Cd0.5Zn0.5S, Cd0.5Zn0.5S/Zn-Fe LDH and 50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3

    图  5  Cd0.5Zn0.5S、Zn-Fe LDH和Cd0.5Zn0.5S/Zn-Fe LDH复合材料对染料的光催化活性((a), (b))及光催化降解反应动力学(c)

    Figure  5.  Photocatalytic activity of Cd0.5Zn0.5S, Zn-Fe LDH and Cd0.5Zn0.5S/Zn-Fe LDH composites for dyes ((a), (b)) and photocatalytic degradation reaction kinetics (c)

    Ct—Concentration after time t of degradation; C0—Initial concentration; MB—Methylene blue; CV—Crystal violet; RhB—Rhodamine B; AF—Acid fuchsin; MG—Malachite green; MO—Methyl orange

    图  6  PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3对CV的光催化活性(a)及50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3对染料降解率(b)

    TC—Tetracycline

    Figure  6.  Photocatalytic activity of PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3 on CV (a) and removal rate of 50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3 for dyes (b)

    图  7  50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3光催化循环实验

    Figure  7.  Photocatalysis cycle experiment of 50%PGS-Cd0.5Zn0.5S/ Zn-Fe LDH 3

    图  8  50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3对混合染料的降解(a)及紫外-可见光谱(b)

    Figure  8.  Degradation of mixed dyes by 50%PGS-Cd0.5Zn0.5S/Zn-Fe LDH 3 (a) and UV-Vis spectra (b)

    图  9  Cd0.5Zn0.5S (a)和Zn-Fe LDH (b)的MS图谱

    Figure  9.  MS maps of Cd0.5Zn0.5S (a) and Zn-Fe LDH (b)

    C2—Space charge capacitance

    图  10  PGS-Cd0.5Zn0.5S/Zn-Fe LDH的活性物种捕获实验

    EDTA-2Na—Ethylenediamine tetraacetic acid disodium salt; BQ—Benzoquinone; IPA—Isopropyl alcohol

    Figure  10.  Trapping experiments for active species of PGS-Cd0.5Zn0.5S/Zn-Fe LDH

    图  11  PGS-Cd0.5Zn0.5S/Zn-Fe LDH光催化降解CV的机制

    NHE—Normal hydrogen electrode

    Figure  11.  Photocatalytic degradation mechanism of CV by PGS-Cd0.5Zn0.5S/Zn-Fe LDH

    表  1  Cd0.5Zn0.5S/Zn-Fe层状双金属氢氧化物(LDH)复合材料的命名

    Table  1.   Nomenclature of Cd0.5Zn0.5S/Zn-Fe layered double hydroxides (LDH) composites

    Sample Mass of Zn-Fe LDH/g Mass ratio of Cd0.5Zn0.5S to
    Zn-Fe LDH
    Cd0.5Zn0.5S/Zn-Fe LDH 1 0.052 7∶1
    Cd0.5Zn0.5S/Zn-Fe LDH 2 0.104 7∶2
    Cd0.5Zn0.5S/Zn-Fe LDH 3 0.156 7∶3
    Cd0.5Zn0.5S/Zn-Fe LDH 4 0.208 7∶4
    Cd0.5Zn0.5S/Zn-Fe LDH 5 0.260 7∶5
    下载: 导出CSV

    表  2  坡缕石(PGS)-Cd0.5Zn0.5S/Zn-Fe LDH复合材料的命名

    Table  2.   Naming of palygorskite (PGS)-Cd0.5Zn0.5S/Zn-Fe LDH composites

    SampleMass ratio of PGS/wt%Mass ratio of Cd0.5Zn0.5S/
    Zn-Fe LDH 3/wt%
    30%PGS-Cd0.5Zn0.5S/
    Zn-Fe LDH 3
    30100
    40%PGS-Cd0.5Zn0.5S/
    Zn-Fe LDH 3
    40100
    50%PGS-Cd0.5Zn0.5S/
    Zn-Fe LDH 3
    50100
    60%PGS-Cd0.5Zn0.5S/
    Zn-Fe LDH 3
    60100
    下载: 导出CSV
  • [1] ZUBAIR M, DAUD M, MCKAY G, et al. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation[J]. Applied Clay Science,2017,143(1):279-292.
    [2] FENG J, HE Y, LIU Y, et al. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects[J]. Chemical Society Reviews,2015,44(15):5291-5319. doi: 10.1039/C5CS00268K
    [3] YAN K, WU G, JIN W. Recent advances in the synthesis of layered, double hydroxide-based materials and their application in hydrogen and oxygen evolution[J]. Energy Technology,2016,4(3):354-368. doi: 10.1002/ente.201500343
    [4] DI G, ZHU Z, HUANG Q, et al. Targeted modulation of g-C3N4 photocatalytic performance for pharmaceutical pollutants in water using Zn Fe-LDH derived mixed metal oxides: Structure-activity and mechanism[J]. The Science of the Total Environment,2019,650(1):1112-1121.
    [5] SHAO M, HAN J, WEI M, et al. The synthesis of hierarchi-cal Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chemical Engineering Journal,2011,168(2):519-524. doi: 10.1016/j.cej.2011.01.016
    [6] ABDERRAZEK K, NAJOUA F S, SRASRA E. Synthesis and characterization of [Zn-Al] LDH: Study of the effect of calcination on the photocatalytic activity[J]. Applied Clay Science,2016,119(2):229-235.
    [7] DAI D S, WANG L, XIAO N, et al. In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation[J]. Applied Catalysis B: Environmental,2018,233(1):194-201.
    [8] XUE W, CHANG W, HU X, et al. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution[J]. Chinese Journal of Catalysis,2021,42(1):152-163. doi: 10.1016/S1872-2067(20)63593-8
    [9] MA A, TANG Z, SHEN S, et al. Controlled synthesis of ZnxCd1-xS nanorods and their composite with RGO for high-performance visible-light photocatalysis[J]. Royal Society of Chemistry Advances,2015,5(35):27829-27836.
    [10] HUANG H, FANG Z, YU K, et al. Visible-light-driven photocatalytic H2 evolution over CdZnS nanocrystal solid solutions: Interplay of twin structures, sulfur vacancies and sacrificial agents[J]. Journal of Materials Chemistry A,2020,8(7):3882-3891. doi: 10.1039/C9TA13836F
    [11] ISIMJAN T T, MAITY P, LLORCA J, et al. Comprehensive study of all-solid-state Z-scheme photocatalytic systems of ZnO/Pt/CdZnS[J]. Journal of Materials Chemistry A,2017,2(8):4828-4837. doi: 10.1021/acsomega.7b00767
    [12] DIMITRIJEVIE N M, LI S B, GRATZEL M. Visible light induced oxygen evolution in aqueous CdS suspensions[J]. Journal of the American Chemical Society,1984,106(22):6565-6569. doi: 10.1021/ja00334a018
    [13] MEI Z W, ZHANG B K, ZHENG J X, et al. Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation[J]. Nano Energy,2016,26(1):405-416.
    [14] QI S, WANG D, ZHAO Y, et al. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes[J]. Journal of Materials Science: Materials in Electronics,2019,30(5):5284-5296. doi: 10.1007/s10854-019-00828-w
    [15] WANG L, YAO Z, JIA F, et al. A facile synthesis of ZnxCd1-xS/CNTs nanocomposite photocatalyst for H2 production[J]. Dalton Transactions,2013,42(27):9976-9981. doi: 10.1039/c3dt50379h
    [16] SU J, WU X, CUI Y, et al. Preparation, characterization and photocatalytic degradation properties of Zn0.5Cd0.5S/SnO2 composites[J]. Journal of Materials Science: Materials in Electronics,2019,31(2):1585-1593.
    [17] WANG S, WANG Y, ZHUANG Y, et al. Synthesis of palygorskite supported spherical ZnS nanocomposites with enhanced photocatalytic activity[J]. CrystEngComm,2021,23(23):4229-4236. doi: 10.1039/D1CE00486G
    [18] 董秀芳, 洪均茂, 王超. 甘氨酸修饰Fe/Zn层状双金属氢氧化物的制备及其吸附性能[J]. 中北大学学报(自然科学版), 2021, 42(6):542-550.

    DONG Xiufang, HONG Junmao, WANG Chao. Preparation and adsorption performance of glycine-modified Fe/Zn layered double hydroxides[J]. Journal of North University of China (Natural Science Edition),2021,42(6):542-550(in Chinese).
    [19] THITE V, GIRIPUNJE S M. Giripunje structural characterization and photoluminescent behavior of CO32– intercalated Zn-Fe layered double hydroxide (LDH) and its colloids[J]. Journal of Electronic Materials,2020,50(4):1601-1607.
    [20] ZENG C, HU Y, ZHANG T, et al. A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting[J]. Journal of Materials Chemistry A,2018,6(35):16932-16942. doi: 10.1039/C8TA04258F
    [21] LUO Y T, WANG K, HU T, et al. Controlled synthesis of palygorskite/Bi5O7I hybrid microspheres with high efficient photodegradation of antibiotics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,616:126225. doi: 10.1016/j.colsurfa.2021.126225
    [22] WU Y, WANG H, TU W, et al. Construction of hole-transported MoO3-x coupled with CdS nanospheres for boosting photocatalytic performance via oxygen-defects-mediated Z-scheme charge transfer[J]. Applied Organometallic Chemistry,2019,33(4):304-315.
    [23] HUANG L, XU H, LI Y, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions,2013,42(24):8606-8616. doi: 10.1039/c3dt00115f
    [24] 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/石墨相 C3N4 Z型复合光催化剂的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1):209-220.

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(1):209-220(in Chinese).
    [25] 唐清海, 李梦佳, 曹珊珊, 等. CdS/Zn-Fe LDO复合材料光催化降解孔雀石绿[J]. 精细化工, 2020, 37(11):2342-2347.

    TANG Qinghai, LI Mengjia, CAO Shanshan, et al. Photocatalytic degradation of malachite green by CdS/Zn-Fe LDO composite materials[J]. Fine Chemicals,2020,37(11):2342-2347(in Chinese).
    [26] TAVAKOLI-AZAR T, MAHJOUB A R, SADJADI M S, et al. Synthesis and characterization of CdTiO3@S composite: Investigation of photocatalytic activity for the degradation of crystal violet under sunlight[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(2):667-683.
    [27] MANIKANDAN V, ELANCHERAN R, REVATHI P, et al. Efficient photocatalytic degradation of crystal violet by using graphene oxide/nickel sulphide nanocomposites[J]. Bulletin of Materials Science,2020,43(1):1-10. doi: 10.1007/s12034-019-1971-5
    [28] PAWAR K K, CHAUDHARY L S, MALI S S, et al. In2O3 nanocapsules for rapid photodegradation of crystal violet dye under sunlight[J]. Journal of Colloid and Interface Science,2020,561(1):287-297.
    [29] WEN X, NIU C, HUANG D, et al. Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst[J]. Journal of Catalysis,2017,355(3):73-86.
    [30] LI X, YU J, FANG Y, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A,2015,3(6):2485-2534. doi: 10.1039/C4TA04461D
    [31] SAMADI-MAYBODI A, SHARIATI M. A study on the transfer of photo-excited charge carriers within direct and inverted type-I heterojunctions of CdS and ZnS QDs[J]. New Journal of Chemistry,2018,42(12):9808-9818. doi: 10.1039/C8NJ00584B
    [32] ZHENG Q, YAN T, LI W, et al. In situ anion exchange synthesis of In2S3/In(OH)3 heterostructures for efficient photocatalytic degradation of MO under solar light[J]. New Journal of Chemistry,2017,41(8):1-10.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  489
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-06-21
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回