留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水珊瑚砂ECC的力学性能与裂纹宽度控制

王振波 郝如升 李鹏飞 韩宇栋 孙鹏

王振波, 郝如升, 李鹏飞, 等. 海水珊瑚砂ECC的力学性能与裂纹宽度控制[J]. 复合材料学报, 2023, 40(4): 2261-2272. doi: 10.13801/j.cnki.fhclxb.20220607.002
引用本文: 王振波, 郝如升, 李鹏飞, 等. 海水珊瑚砂ECC的力学性能与裂纹宽度控制[J]. 复合材料学报, 2023, 40(4): 2261-2272. doi: 10.13801/j.cnki.fhclxb.20220607.002
WANG Zhenbo, HAO Rusheng, LI Pengfei, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272. doi: 10.13801/j.cnki.fhclxb.20220607.002
Citation: WANG Zhenbo, HAO Rusheng, LI Pengfei, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272. doi: 10.13801/j.cnki.fhclxb.20220607.002

海水珊瑚砂ECC的力学性能与裂纹宽度控制

doi: 10.13801/j.cnki.fhclxb.20220607.002
基金项目: 国家自然科学基金(51808545);中央高校基本科研业务费专项资金(2022 YQLJ05)
详细信息
    通讯作者:

    王振波,博士,副教授,硕士生导师,研究方向为高延性水泥基复合材料(ECC/SHCC)、海水珊瑚骨料混凝土、混凝土断裂力学  E-mail: wangzb@cumtb.edu.cn

  • 中图分类号: TU528

Mechanical properties and crack width control of seawater coral sand ECC

Funds: National Natural Science Foundation of China (51808545); Fundamental Research Funds for the Central Universities (2022 YQLJ05)
  • 摘要: 为解决珊瑚混凝土的脆性与耐久性问题,采用岛礁地域性原材料制备了海水珊瑚砂高延性水泥基材料(Seawater coral sand engineered cementitious composites,SCECC)。试验研究了不同骨料种类、最大粒径和细度模数对ECC抗压、抗拉力学性能和裂缝控制能力的影响。结果表明:随珊瑚砂细度模数减小,SCECC抗压强度先增后降,最大粒径2.36 mm的特细砂SCECC达到最高(63.3 MPa);降低珊瑚砂最大粒径,SCECC拉伸性能参数不同程度地提升。最大粒径0.60 mm的SCECC拉伸性能最优,其初裂强度、抗拉强度和极限拉应变分别为2.29 MPa、4.11 MPa和5.15%,临近破坏时的平均裂纹宽度可控制在81 μm。相比于淡水石英砂ECC,SCECC抗压强度高且早期强度发展快(7天抗压强度可达28天的73%~78%)。两种ECC的骨料破坏和聚乙烯醇(PVA)纤维失效模式不同,SCECC拉伸强度、弹性模量及峰值应变附近的裂纹控制能力略低,但延性明显更优。

     

  • 图  1  珊瑚砂的形貌

    Figure  1.  Appearances of coral sand

    图  2  轴拉装置与试件尺寸

    Figure  2.  Setup of uniaxial tension and sample size

    图  3  各组ECC抗压强度

    Figure  3.  Compressive strength of ECC specimens

    图  4  各组ECC单轴拉伸应力-应变曲线

    Figure  4.  Uniaxial tensile stress-strain curves of ECC specimens

    图  5  各组ECC单轴拉伸性能参数

    Figure  5.  Parameters for uniaxial tensile properties of each ECC

    图  6  ECC试件断面形态

    Figure  6.  Characteristics of crack plane of ECC specimens

    图  7  各组ECC裂纹形态图

    Figure  7.  Cracking morphologies of each ECC

    图  8  各组ECC不同应变下平均裂纹宽度发展趋势

    Figure  8.  Development trend of average crack width at different strains of each ECC

    图  9  各组ECC断面处PVA纤维的SEM图像

    Figure  9.  SEM images of PVA fiber at crack planes of each ECC

    表  1  P·O 42.5水泥化学成分

    Table  1.   Chemical composition of P·O 42.5 cement

    ComponentCaOSiO2Fe2O3Al2O3SO3MgOK2O
    Mass fraction/wt%66.5415.994.263.832.781.611.46
    下载: 导出CSV

    表  2  人工模拟海水成分

    Table  2.   Composition of artificial seawater

    ComponentNaClCaCl2MgSO4MgCl2
    Content/(mol·L−1)445.217.2251.6864.82
    下载: 导出CSV

    表  3  聚乙烯醇(PVA)纤维物理和力学性能

    Table  3.   Physical and mechanical properties of polyvinyl alcohol (PVA) fiber

    Density/
    (g·cm−3)
    Tensile strength/MPaElastic modulus/GPaDiameter/mmLength/mm
    1.2162042.80.03912
    下载: 导出CSV

    表  4  珊瑚砂化学成分

    Table  4.   Chemical composition of coral sand

    ComponentNa2OMgOAl2O3SiO2SO3K2OCaOTiO2Fe2O3SrO
    Mass fraction/wt%0.460.502.436.060.430.3585.250.292.071.91
    下载: 导出CSV

    表  5  两种骨料的压碎指标

    Table  5.   Crushing index of two aggregates

    Aggregate typeCrushing value in different particle size ranges/%
    1.18-2.36 mm0.60-1.18 mm0.30-0.60 mm
    Quartz sand14.0 4.63.4
    Coral sand25.512.63.7
    下载: 导出CSV

    表  6  各组高延性水泥基材料(ECC)骨料级配参数

    Table  6.   Aggregate grading parameters of each engineered cementitious composite (ECC) mixtures

    SampleProportion of aggregates in different particle size ranges/%Fineness modulus
    1.18-2.36 mm0.60-1.18 mm0-0.60 mm
    SC-2.36-1 30 25 45 2.65(Medium sand)
    SC-2.36-2 5 15 85 1.55(Extra fine sand)
    SC-1.18 0 11 89 1.43(Extra fine sand)
    SC-0.60 0 0 100 1.23(Extra fine sand)
    TQ-0.60 0 0 100 1.23(Extra fine sand)
    Notes: SC-2.36-1 represents first grade of seawater coral sand ECC with the maximum grain size of 2.36 mm; TQ-0.60 represents tap water-quartz sand ECC with the maximum grain size of 0.60 mm.
    下载: 导出CSV

    表  7  ECC配合比(质量比)

    Table  7.   Mix proportions of ECC (Mass ratio)

    SampleCementFly ashSandWaterPVA fiberSuper plasticizer
    Coral sandQuartz sandSeawaterTap water
    SC-2.36-110.430.50.50.0320.00123
    SC-2.36-210.430.50.50.0320.00135
    SC-1.1810.430.50.50.0320.00147
    SC-0.6010.430.50.50.0320.00172
    TQ-0.6010.430.50.50.0320.00172
    下载: 导出CSV
  • [1] WANG A G, LYU B C, ZHANG Z H, et al. The development of coral concretes and their upgrading technologies: A critical review[J]. Construction and Building Materials,2018,187:1004-1019. doi: 10.1016/j.conbuildmat.2018.07.202
    [2] 马林建, 罗棕木, 段力群, 等. 全珊瑚混凝土的脆性评价[J]. 中国矿业大学学报, 2021, 50(2):281-288.

    MA Linjian, LUO Zongmu, DUAN Liqun, et al. Brittleness evaluation of coral concrete[J]. Journal of China University of Mining & Technology,2021,50(2):281-288(in Chinese).
    [3] 李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3):926-941.

    LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica,2022,39(3):926-941(in Chinese).
    [4] ZHANG J, GONG C X, GUO Z L, et al. Engineered cementitious composite with characteristic of low drying shrinkage[J]. Cement and Concrete Research,2009,39(4):303-312. doi: 10.1016/j.cemconres.2008.11.012
    [5] 高世壮, 薛善彬, 张鹏, 等. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J]. 复合材料学报, 2022, 39(10): 4778-4787.

    GAO Shizhuang, XUE Shanbin, ZHANG Peng, et al. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4778-4787(in Chinese).
    [6] 蒋永祥, 王跃, 马耀举, 等. 受蚀高韧性水泥基材料轴压损伤的超声表征[J]. 水利水电技术, 2022, 53(12): 134-140.

    JIANG Yongxiang, WANG Yue, MA Yaoju, et al. Ultrasonic characterization of the compression damage in eroded high toughness cementitious composites[J]. Water Resources and Hydropower Engineering, 2022, 53(12): 134-140(in Chinese).
    [7] 张君, 陈切顺, 王振波, 等. 无切缝水泥混凝土路面设计与建造[J]. 哈尔滨工业大学学报, 2017, 49(3):68-73.

    ZHANG Jun, CHEN Qieshun, WANG Zhenbo, et al. Design and construction of jointless concrete pavement[J]. Journal of Harbin Institute of Technology,2017,49(3):68-73(in Chinese).
    [8] 贾毅, 赵人达, 廖平, 等. PP-ECC用于墩底塑性铰区域的抗震性能试验[J]. 中国公路学报, 2019, 32(7):100-110.

    JIA Yi, ZHAO Renda, LIAO Ping, et al. Experimental investigation on seismic behavior of bridge piers with polypropylene-engineered cementitious composite in plastic hinge regions[J]. China Journal of Highway and Transport,2019,32(7):100-110(in Chinese).
    [9] WANG Z B, SUN P, ZUO J P, et al. Long-term properties and microstructure change of engineered cementitious composites subjected to high sulfate coal mine water in drying-wetting cycles[J]. Materials & Design,2021,203:109610.
    [10] HUANG B T, YU J, WU J Q, et al. Seawater sea-sand engineered cementitious composites (SS-ECC) or marine and coastal applications[J]. Composites Communications,2020,20:100353. doi: 10.1016/j.coco.2020.04.019
    [11] 李祚, 姚淇耀, 朱圣焱, 等. 乌兰布和沙漠砂制备高延性水泥基复合材料的力学性能[J]. 硅酸盐通报, 2021, 40(4):1103-1115.

    LI Zuo, YAO Qiyao, ZHU Shengyan, et al. Mechanical properties of engineered cementitious composites prepared with sand in Ulanbuh desert[J]. Bulletin of the Chinese Ceramic Society,2021,40(4):1103-1115(in Chinese).
    [12] SAHMARAN M, LACHEMI M, HOSSAIN K M A, et al. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites[J]. ACI Materials Journal,2009,106(3):308-316.
    [13] 中国建筑科学研究院. 普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2006.

    China Academy of Building Science. Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete: JGJ 52—2006[S]. Beijing: China Architecture & Building Press(in Chinese).
    [14] ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures,2009,42(9):1197-1208. doi: 10.1617/s11527-009-9541-8
    [15] 王振波, 张君, 王庆. 混杂纤维增强延性水泥基复合材料力学性能与裂宽控制[J]. 建筑材料学报, 2018, 21(2):216-221. doi: 10.3969/j.issn.1007-9629.2018.02.007

    WANG Zhenbo, ZHANG Jun, WANG Qing. Mechanical behavior and crack width control of hybrid fiber reinforced ductile cementitious composites[J]. Journal of Building Materials,2018,21(2):216-221(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.007
    [16] LIU H Z, ZHANG Q, GU C S, et al. Influence of microcracking on the permeability of engineered cementitious composites[J]. Cement and Concrete Composites,2016,72:104-113. doi: 10.1016/j.cemconcomp.2016.05.016
    [17] LU C, YU J, LEUNG C K Y. An improved image processing method for assessing multiple cracking development in strain hardening cementitious composites (SHCC)[J]. Cement and Concrete Composites,2016,74:191-200. doi: 10.1016/j.cemconcomp.2016.10.005
    [18] 韩宇栋, 丁小平, 郝挺宇, 等. 海水珊瑚骨料混凝土耐久性研究现状[J]. 工业建筑, 2021, 51(2):186-192, 120.

    HAN Yudong, DING Xiaoping, HAO Tingyu, et al. Current status of research on durability of seawater-coral aggregate concrete[J]. Industrial Construction,2021,51(2):186-192, 120(in Chinese).
    [19] LYV B C, WANG A G, ZHANG Z H, et al. Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate[J]. Cement and Concrete Composites,2019,100:25-34. doi: 10.1016/j.cemconcomp.2019.03.016
    [20] 王振波, 刘伟康, 韩宇栋, 等. 实现高强度海水珊瑚骨料混凝土的配合比设计[J]. 工业建筑, 2021, 51(6):181-185.

    WANG Zhenbo, LIU Weikang, HAN Yudong, et al. Mix proportion design of high-strength seawater coral aggregate concrete[J]. Industrial Construction,2021,51(6):181-185(in Chinese).
    [21] 秦修云, 赵军, 刘茂军. 水泥珊瑚砂砂浆的抗压强度与微观结构[J]. 科学技术与工程, 2019, 19(21):239-244. doi: 10.3969/j.issn.1671-1815.2019.21.036

    QIN Xiuyun, ZHAO Jun, LIU Maojun. Compressive strength and microstructure of coral sand cement mortar[J]. Science Technology and Engineering,2019,19(21):239-244(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.21.036
    [22] 梅军帅, 吴静, 王罗新, 等. 珊瑚砂浆的力学性能与微观结构特征[J]. 建筑材料学报, 2020, 23(2):263-270.

    MEI Junshuai, WU Jing, WANG Luoxin, et al. Mechanical properties and microstructure characteristics of coral sand mortar[J]. Journal of Building Materials,2020,23(2):263-270(in Chinese).
    [23] CAI X R, XU S L. Uniaxial compressive properties of ultra high toughness cementitious composite[J]. Journal of Wuhan University of Technology-Materials Science Edition,2011,26(4):762-769. doi: 10.1007/s11595-011-0307-0
    [24] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):04014111. doi: 10.1061/(ASCE)MT.1943-5533.0001034
    [25] 王振波, 左建平, 张君, 等. 混杂纤维延性水泥基材料单轴受压力学特性[J]. 建筑材料学报, 2018, 21(4):639-644. doi: 10.3969/j.issn.1007-9629.2018.04.018

    WANG Zhenbo, ZUO Jianping, ZHANG Jun, et al. Mechanical properties of hybrid fiber reinforced engineered cementitious composites under uniaxial compression[J]. Journal of Building Materials,2018,21(4):639-644(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.04.018
    [26] KANDA T, LIN Z, LI V C. Tensile stress-strain modeling of pseudostrain hardening cementitious composites[J]. Journal of Materials in Civil Engineering,2000,12(2):147-156. doi: 10.1061/(ASCE)0899-1561(2000)12:2(147)
    [27] 张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7):1754-1762.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1754-1762(in Chinese).
    [28] 姚淇耀, 陆宸宇, 罗月静, 等. PE/PVA纤维海砂ECC的拉伸性能与本构模型[J]. 建筑材料学报, 2022, 25(9):976-983. doi: 10.3969/j.issn.1007‑9629.2022.09.013

    YAO Qiyao, LU Chenyu, LUO Yuejing, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J]. Journal of Building Materials,2022,25(9):976-983(in Chinese). doi: 10.3969/j.issn.1007‑9629.2022.09.013
    [29] LI M, LI V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J]. Materials and Structures,2013,46(3):405-420. doi: 10.1617/s11527-012-9909-z
    [30] 李祚, 潘丁菊, 罗月静, 等. 骨料粒径对纤维增强水泥基复合材料性能的影响[J]. 材料科学与工程学报, 2022, 40(2):318-327.

    LI Zuo, PAN Dingju, LUO Yuejing, et al. Effect of aggregate particle size on the mechanical properties of engineered cementitious composite[J]. Journal of Materials Science and Engineering,2022,40(2):318-327(in Chinese).
    [31] PAUL S C, VAN ZIJL G P A G. Mechanically induced cracking behaviour in fine and coarse sand strain hardening cement based composites (SHCC) at different load levels[J]. Journal of Advanced Concrete Technology,2013,11(11):301-311. doi: 10.3151/jact.11.301
    [32] LI Y B, LI J X, YANG E H, et al. Investigation of matrix cracking properties of engineered cementitious composites (ECCs) incorporating river sands[J]. Cement and Concrete Composites,2021,123:104204. doi: 10.1016/j.cemconcomp.2021.104204
    [33] 王振波. 聚乙烯醇-钢纤维混杂增强水泥基复合材料力学性能研究[D]. 北京: 清华大学, 2016.

    WANG Zhenbo. Studies on mechanical performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composites[D]. Beijing: Tsinghua University, 2016(in Chinese).
    [34] ZHANG X Y, ZUO J P, WANG Z B, et al. The evolution of the microstructure and mechanical properties of coral aggregate mortar under uniaxial compression using ultrasonic analysis[J]. Construction and Building Materials,2021,300:12400.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  397
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-05-17
  • 录用日期:  2022-05-26
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回