留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响

何莉萍 刘龙镇 苏胜培 夏凡 侯淑娟

何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4): 2038-2048. doi: 10.13801/j.cnki.fhclxb.20220802.001
引用本文: 何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4): 2038-2048. doi: 10.13801/j.cnki.fhclxb.20220802.001
HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2038-2048. doi: 10.13801/j.cnki.fhclxb.20220802.001
Citation: HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2038-2048. doi: 10.13801/j.cnki.fhclxb.20220802.001

纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响

doi: 10.13801/j.cnki.fhclxb.20220802.001
基金项目: 湖南大学汽车车身先进设计制造国家重点实验自主研究课题(72175004)
详细信息
    通讯作者:

    何莉萍,博士,教授,博士生导师,研究方向为纤维增强复合材料 E-mail: lphe@hnu.edu.cn

  • 中图分类号: TQ327.9

Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites

Funds: Fund from the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (72175004)
  • 摘要: 为研发低碳、节能、性能优异的麻纤维增强树脂绿色复合材料并扩展其应用领域,本文采用团队发明的氨基硅油乳液对黄麻纤维(JF)进行表面改性,运用开炼-注塑成型复合工艺研制了纤维含量为10wt%~25wt%的改性黄麻纤维增强聚丙烯(JF/PP)新型复合材料,系统全面地研究了改性麻纤维含量对JF/PP复合材料力学性能、结晶行为、耐热性能(热变形温度)及热尺寸稳定性(线膨胀系数)的影响规律及相关作用机制,并采用接触角测试分析与SEM技术分析了复合材料界面相容性与结合状态。结果表明:氨基硅油乳液改性JF,增强了JF与PP基体的界面结合力。随着纤维含量的增加,JF/PP复合材料的拉伸和弯曲强度逐渐增加,而冲击强度则有所降低。DSC、热变形温度和线膨胀系数测试分析表明,添加改性JF能够促进PP异相成核,并限制PP分子链的运动能力,从而提高JF/PP复合材料的耐热性能,且随着纤维含量增加,耐热性能呈不断上升趋势。当改性JF含量为25wt%时,JF/PP复合材料的热变形温度为142.5℃,较纯PP提高了53.5%。同时,复合材料平均线膨胀系数随纤维含量增加而明显降低,表明复合材料的热尺寸稳定性显著提高。相比纯PP,含量为25wt%时的复合材料的平均线膨胀系数在平行流道方向下降了73.2%,垂直流道方向则下降了14.4%,存在各向异性。纤维含量为15wt%和20wt%时,改性JF/PP综合力学和热性能相对更优。

     

  • 图  1  黄麻纤维(JF)的SEM图像

    Figure  1.  SEM image of jute fiber (JF)

    图  2  改性JF增强聚丙烯(JF/PP)复合材料制备工艺流程

    Figure  2.  Process flow chart of preparing JF reinforced polypropylene composites (JF/PP) composites

    图  3  JF改性前后静态水接触角

    Figure  3.  Water contact angle of unmodified and modified JF

    图  4  纯PP和不同JF含量的改性JF/PP力学性能对比

    Figure  4.  Mechanical properties of PP and modified JF/PP composites

    图  5  JF含量20wt%的未改性JF/PP拉伸断裂面SEM图像

    Figure  5.  SEM image of tensile fractured unmodified JF/PP with 20wt% JF

    图  6  不同JF含量的改性JF/PP复合材料拉伸断裂面SEM图像:(a) 10wt%JF/PP;(b) 15wt%JF/PP;(c) 20wt%JF/PP;(d) 25wt%JF/PP

    Figure  6.  Tensile fractured SEM images of the modified JF/PP composites with different JF contents: (a) 10wt%JF/PP; (b) 15wt%JF/PP; (c) 20wt%JF/PP; (d) 25wt%JF/PP

    图  7  PP及JF/PP复合材料结晶曲线

    Figure  7.  Crystallization curves of PP and JF/PP composites

    图  8  PP及JF/PP复合材料熔融曲线

    Figure  8.  Melting curves of PP and JF/PP composites

    图  9  纯PP和改性JF/PP复合材料的热变形温度

    Figure  9.  Heat deflection temperature of PP and JF/PP composites

    图  10  纯PP和改性JF/PP材料的热膨胀曲线

    Figure  10.  Thermal expansion curves of PP and the JF/PP composites

    图  11  纯 PP及改性JF/PP材料的线膨胀系数(CLE)

    Figure  11.  Linear thermal expansion coefficient (CLE) of PP and the modified JF/PP composites

    表  1  PP及改性JF/PP复合材料的DSC测试结果

    Table  1.   DSC test results of PP and the modified JF/PP composites

    TermsMass fraction of JF/wt%
    010152025
    Tm/℃165.86±0.26166.88±0.42167.37±0.17167.54±0.19167.79±0.30
    Tc/℃121.15±0.14121.28±0.09121.65±0.23122.29±0.16122.37±0.25
    ΔHm/(J·g−1)87.99±0.4478.78±0.3573.74±0.5668.89±0.3763.32±0.41
    Xc/%42.10±0.2141.83±0.1841.45±0.3141.14±0.2240.34±0.26
    Notes: Tm—Melting temperature; Tc—Cold crystallization temperature; ΔHm—Melting enthalpy; Xc—Crystallinity; Data are tested mean value ± standard deviation.
    下载: 导出CSV

    表  2  JF/PP复合材料在平行与垂直流道方向的CLE对比

    Table  2.   Comparing the CLE results of the modified JF/PP composites in the parallel and vertical flow directions

    CLE/(10−6 K−1)Mass fraction of JF/wt%
    010152025
    Vertical direction154.7±3.2145.5±2.6140.1±2.4136.6±1.0132.4±1.9
    Parallel direction130.2±2.162.1±1.157.6±1.846.2±2.534.8±1.3
    Difference between vertical to parallel directions24.5±5.383.4±3.882.5±4.290.4±3.697.6±3.2
    下载: 导出CSV
  • [1] WANG J, WU Q, LIU J, et al. Vehicle emission and atmospheric pollution in China: Problems, progress, and prospects[J]. PeerJ,2019,7:e6932-e6953. doi: 10.7717/peerj.6932
    [2] SANTOS J, GOUVEIA R M, SILVA F. Designing a new sustainable approach to the change for lightweight materials in structural components used in truck industry[J]. Journal of Cleaner Production,2017,164(15):115-123.
    [3] SELLITTO A, RICCIO A, MAGNO G, et al. Feasibility study on the redesign of a metallic car hood by using composite materials[J]. International Journal of Automotive Technology,2020,21(2):471-479. doi: 10.1007/s12239-020-0044-5
    [4] SHA H A J S, PATIL P P. A review on natural fiber composites[J]. Journal of Xidian University,2020,14(6):2844-2849. doi: 10.37896/jxu14.6/332
    [5] 王春红, 鹿超, 贾瑞婷, 等. 洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能[J]. 复合材料学报, 2020, 37(7):1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002

    WANG Chunhong, LU Chao, JIA Ruiting, et al. Moisture absorption and mechanical properties of kenaf fiber-cotton fiber blended fabric/epoxy composite[J]. Acta Materiae Compositae Sinica,2020,37(7):1581-1589(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191226.002
    [6] HE L, LI W, CHEN D, et al. Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites[J]. Materials & Design,2015,77(15):142-148.
    [7] AGARWAL J, SAHOO S, MOHANTY S, et al. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: A review[J]. Journal of Thermoplastic Composite Materials,2020,33(7):978-1013. doi: 10.1177/0892705718815530
    [8] HE L, XIA F, WANG Y, et al. Mechanical and dynamic mechanical properties of the amino silicone oil emulsion modified ramie fiber reinforced composites[J]. Polymers,2021,13(23):4083-4098. doi: 10.3390/polym13234083
    [9] 孙宏雨, 吕兴聪, 袁纳新, 等. 基于响应曲面法的木塑复合材料强度分析及挤出工艺优化[J]. 复合材料学报, 2021, 38(6):1838-1846. doi: 10.13801/j.cnki.fhclxb.20200810.001

    SUN Hongyu, LV Xingcong, YUAN Naxin, et al. Strength analysis and extrusion process optimization of wood-plastic composite by response surface method[J]. Acta Materiae Compositae Sinica,2021,38(6):1838-1846(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200810.001
    [10] KUMAR R, SUBRAMANINAN H S. Experimental and microstructural evaluation on mechanical properties of sisal fiber reinforced biocomposites[J]. Steel and Composite Structures,2019,33(2):299-306.
    [11] HE L, LI W, CHEN D, et al. Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation[J]. Applied Surface Science,2018,440:331-340. doi: 10.1016/j.apsusc.2018.01.101
    [12] 那景新, 高原, 慕文龙, 等. 高温老化对玄武岩纤维增强树脂复合材料-铝合金单搭接接头失效的影响[J]. 复合材料学报, 2020, 37(1):140-146.

    NA Jingxin, GAO Yuan, MU Wenlong, et al. Effect of high temperature exposure on adhesively bonded basalt fiber reinforced polymer composite-aluminum alloy single lap joints[J]. Acta Materiae Compositae Sinica,2020,37(1):140-146(in Chinese).
    [13] 吴国峰, 雷亮, 杨波, 等. 车用聚丙烯材料线性膨胀系数的影响因素分析[J]. 工程塑料应用, 2017, 45(3):134-137. doi: 10.3969/j.issn.1001-3539.2017.03.030

    WU Guofeng, LEI Liang, YANG Bo, et al. Analysis on influence factors of linear expansion coefficient of automotive polypropylene materials[J]. Engineering Plastics Application,2017,45(3):134-137(in Chinese). doi: 10.3969/j.issn.1001-3539.2017.03.030
    [14] 徐俊杰, 郝笑龙, 周海洋, 等. 超高填充聚丙烯基木塑复合材料高低温性能[J]. 复合材料学报, 2021, 38(12):4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002

    XU Junjie, HAO Xiaolong, ZHOU Haiyang, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica,2021,38(12):4106-4122(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210317.002
    [15] GUILLOU J, LAVADIYA D N, MUNRO T, et al. From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials[J]. Applied Thermal Engineering,2018,128:1372-1381. doi: 10.1016/j.applthermaleng.2017.09.095
    [16] SILVA T, PHPMD S, RIBEIRO M P, et al. Thermal and chemical characterization of kenaf fiber (Hibiscus cannabinus) reinforced epoxy matrix composites[J]. Polymers,2021,13(12):2016. doi: 10.3390/polym13122016
    [17] GHANBARI A, SADAT JALILI N, HADDADI S A, et al. Mechanical properties of extruded glass fiber reinforced thermoplastic polyolefin composites[J]. Polymer Composites,2020,41(9):3748-3757. doi: 10.1002/pc.25672
    [18] 韩松芬, 李阳, 何敏, 等. 聚乳酸基复合材料耐热改性研究进展[J]. 工程塑料应用, 2019, 47(6):143-147. doi: 10.3969/j.issn.1001-3539.2019.06.027

    HAN Songfen, LI Yang, HE Min, et al. Research progress on heat resistant modification of PLA matrix composites[J]. Engineering Plastics Application,2019,47(6):143-147(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.06.027
    [19] ORUE A, ANAKABE J, ZALDUA-HUICI A M, et al. Preparation and characterization of composites based on poly(lacticacid)/poly(methyl methacrylate) matrix and sisal fiber bundles: The effect of annealing process[J]. Journal of Thermoplastic Composite Materials,2022,35(8):1132-1153. doi: 10.1177/0892705720930780
    [20] CHEN X, REN J, LI J B, et al. Effects of heat treatment on the thermal and mechanical properties of ramie fabric-reinforced poly(lactic acid) bio-composites[J]. Journal of Reinforced Plastics and Composites,2015,34(1):28-36. doi: 10.1177/0731684414562222
    [21] 展江湖, 王迎宵, 杨志浩, 等. 苎麻纤维增强聚乳酸复合材料性能研究[J]. 工程科学学报, 2021, 43(7):952-959.

    ZHAN Jianghu, WANG Yingxiao, YANG Zhihao, et al. Effect of fiber content on the properties of ramie fiber reinforced poly(lacticacid) composites[J]. Chinese Journal of Engineering,2021,43(7):952-959(in Chinese).
    [22] 陈明思, 李文军, 何莉萍. 一种生物质纤维处理剂及其制备方法: 中国, 201611053293.5[P]. 2019-1-29.

    CHEN Mingsi, LI Wenjun, HE Liping. A kind of biomass fiber treatment agent and its preparation method: China, 201611053293.5[P]. 2019-1-29(in Chinese).
    [23] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of fiber reinforced plastics: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005 (in Chinese).
    [24] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for bending properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] 中国国家标准化管理委员会. 纤维增强塑料冲击性能试验方法: GB/T 1451—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for impact properties of fiber reinforced plastics: GB/T 1451—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [26] 李浩, 宋永明, 王海刚, 等. 滑石粉对微孔发泡木粉/聚丙烯复合材料结晶行为及泡孔结构的影响[J]. 复合材料学报, 2017, 34(8):1636-1644.

    LI Hao, SONG Yongming, WANG Haigang, et al. Influence of talc on crystallization behavior and cellular structure of microcellular foamed wood flour/PP composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1636-1644(in Chinese).
    [27] 中国国家标准化管理委员会. 塑料 负荷变形温度的测定 第1部分: 通用试验方法: GB/T 1634.1—2019 [S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of temperature of deflection under load—Part 1: General test method: GB/T 1634.1—2019[S]. Beijing: China Standards Press, 2019 (in Chinese).
    [28] 中国国家标准化管理委员会. 纤维增强塑料平均线膨胀系数试验方法: GB/T 2572—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites—Determination for mean coefficient of linear expansion: GB/T 2572—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [29] ALI A, SHAKER K, NAWAB Y, et al. Hydrop-hobic treatment of natural fibers and their composites-A review[J]. Journal of Industrial Textiles,2018,47(8):2153-2183. doi: 10.1177/1528083716654468
    [30] LI G, YUE J, GUO C, et al. Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating[J]. Construction and Building Materials,2018,169:1-7. doi: 10.1016/j.conbuildmat.2018.02.191
    [31] ASIM M, JAWAID M, FOUAD H, et al. Effect of surface modified date palm fibre loading on mechanical, thermal properties of date palm reinforced phnolic composites[J]. Composite Structures,2021,267(2):113913.
    [32] 刘运学, 田鑫, 范兆荣, 等. 聚丙烯/剑麻纤维复合材料的制备与性能研究[J]. 塑料科技, 2018, 46(5):49-52. doi: 10.15925/j.cnki.issn1005-3360.2018.05.007

    LIU Yunxue, TIAN Xin, FAN Zhaorong, et al. Preparation and properties of sisal fiber/polypropylene composites[J]. Plastics Science and Technology,2018,46(5):49-52(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2018.05.007
    [33] LOPATTANANON N, PAYAE Y, SEADAN M. Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites[J]. Journal of Applied Polymer Science,2008,110(1):433-443. doi: 10.1002/app.28496
    [34] PENGFEI N, XIAOJUN W, BAOYING L, et al. Melting and nonisothermal crystallization behavior of polypropylene/hemp fiber composites[J]. Journal of Composite Materials,2012,46(2):203-210. doi: 10.1177/0021998311410494
    [35] 刘一楠, 刘珊杉, 郭文静. 木纤维尺寸对聚乳酸结晶特性的影响[J]. 西南林业大学学报(自然科学), 2017, 37(2):184-191.

    LIU Yi'nan, LIU Shanshan, GUO Wenjing. Effects of wood fibre size on crystallization morphology of poly(lactic acid)[J]. Journal of Southwest Forestry University (Natural Science),2017,37(2):184-191(in Chinese).
    [36] ZHANG A, ZHAO G, CHAI J, et al. Crystallization and mechanical properties of glass fiber reinforced polypropylene composites molded by rapid heat cycle molding[J]. Fibers and Polymers,2020,21(12):2915-2926. doi: 10.1007/s12221-020-1284-8
    [37] LUO H, ZHANG C, XIONG G, et al. Effects of alkali and alkali/silane treatments of corn fibers on mechanical and thermal properties of its composites with polylactic acid[J]. Polymer Composites,2016,37(12):3499-3507. doi: 10.1002/pc.23549
    [38] 王经武. 塑料改性技术[M]. 北京: 化学工业出版社, 2004: 798-823.

    WANG Jingwu. Plastic modification technology[M]. Beijing: Chemical Industry Press, 2004: 798-823.
    [39] MONROE J A, GEHRING D, KARAMAN I, et al. Tailored thermal expansion alloys[J]. Acta Materialia,2016,102:333-341. doi: 10.1016/j.actamat.2015.09.012
    [40] 付鹏, 崔吉吉, 于艺博, 等. 硅灰石填充改性尼龙1212复合材料的制备[J]. 高分子材料科学与工程, 2014, 30(4):154-157. doi: 10.16865/j.cnki.1000-7555.2014.04.032

    FU Peng, CUI Jiji, YU Yibo, et al. Preparation of nylon1212/wollastonite composites[J]. Polymer Materials Science and Engineering,2014,30(4):154-157(in Chinese). doi: 10.16865/j.cnki.1000-7555.2014.04.032
    [41] XIE Y, XIAO Z, MILITZ H, et al. Silane coupling agents used in natural fiber/plastic composites[J]. Handbook of Composites from Renewable Materials, Functionalization,2017,4(407):1219-1228.
    [42] LI F, QU C B, HUA Y, et al. Largely improved dimensional stability of short carbon fiber reinforced polyether sulfone composites by graphene oxide coating at a low content[J]. Carbon,2017,119:339-349. doi: 10.1016/j.carbon.2017.04.056
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  335
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-07-01
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回