留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向纤维增强SiCf/SiC复合材料单轴拉伸损伤失效机制

刘波 刘翠云 马朝利

刘波, 刘翠云, 马朝利. 单向纤维增强SiCf/SiC复合材料单轴拉伸损伤失效机制[J]. 复合材料学报, 2022, 39(9): 4483-4497. doi: 10.13801/j.cnki.fhclxb.20220928.001
引用本文: 刘波, 刘翠云, 马朝利. 单向纤维增强SiCf/SiC复合材料单轴拉伸损伤失效机制[J]. 复合材料学报, 2022, 39(9): 4483-4497. doi: 10.13801/j.cnki.fhclxb.20220928.001
LIU Bo, LIU Cuiyun, MA Chaoli. Damage failure mechanism of unidirectional fiber reinforced SiCf/SiC composites under uniaxial tension[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4483-4497. doi: 10.13801/j.cnki.fhclxb.20220928.001
Citation: LIU Bo, LIU Cuiyun, MA Chaoli. Damage failure mechanism of unidirectional fiber reinforced SiCf/SiC composites under uniaxial tension[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4483-4497. doi: 10.13801/j.cnki.fhclxb.20220928.001

单向纤维增强SiCf/SiC复合材料单轴拉伸损伤失效机制

doi: 10.13801/j.cnki.fhclxb.20220928.001
基金项目: 国家科技重大专项(J2019-VI-0001-0114)
详细信息
    通讯作者:

    刘波,博士,副教授,博士生导师,研究方向为计算固体力学、复合材料力学 E-mail: liubo68@buaa.edu.cn

  • 中图分类号: TB332;V214.8;V414.8

Damage failure mechanism of unidirectional fiber reinforced SiCf/SiC composites under uniaxial tension

Funds: National Major Science and Technology Projects of China (J2019-VI-0001-0114)
  • 摘要: 本文对纤维增强陶瓷基复合材料在单向载荷下的损伤失效机制进行了研究。根据常规的剪滞模型,引入库仑定律描述界面剪应力,根据能量平衡方法和断裂力学脱粘准则,计算了基体的稳态开裂应力和界面的脱粘长度。分析了不同剪滞模型下基体稳态开裂应力的区别和适用范围,讨论了界面剪应力、界面摩擦系数、界面脱粘能、纤维体积分数等对基体稳态开裂应力的影响。采用剪滞模型描述纤维增强陶瓷基复合材料在损伤后的细观结构应力场,根据基体裂纹随机演化方法确定基体裂纹的间距,根据断裂力学脱粘准则描述界面的脱粘行为,将剪滞模型和损伤模型结合预测了单向纤维增强陶瓷基复合材料在单轴载荷下的应力-应变曲线,讨论了各因素对应力-应变曲线的影响。

     

  • 图  1  基体稳态开裂的裂纹尖端和裂纹尾迹图

    Figure  1.  Crack tip and crack trail of steady-state matrix cracking

    σ—Uniform loading stress perpendicular to the crack surface

    图  2  纤维增强陶瓷基复合材料裂纹尾迹桥连纤维等效体积单元示意图

    Figure  2.  Schematic diagram of representative volume element of fiber-reinforced ceramic composites with crack wake bridging fiber

    Vf—Fiber volume fraction; v(0)—Relative displacement function; $\overline R$—Effective radius; r—Radial direction; θ—Tangents; z—Axial direction; ld—Debonding length; L—Matrix crack spacing; τi—Interfacial frictional shear stress

    图  3  剪滞模型的等效体积单元

    Figure  3.  Representative volume element of shear lag model

    图  4  基体裂纹扩展与位置分布

    Figure  4.  Matrix crack propagation and distribution

    m—Weibull modulus; σR—Matrix characteristic cracking stress

    图  5  不同基体临界开裂应力下威布尔模量对最终裂纹间距的影响

    Figure  5.  Influence of Weibull modulus on final crack spacing under different matrix critical crack stresses

    σmc—Steady-state cracking stress of matrix

    图  6  SiC/CAS的各剪滞模型库仑摩擦系数μ与基体稳态开裂应力关系图(ξd=0、Vf=34vol%)

    Figure  6.  Relationship between Coulomb friction coefficient μ and matrix steady-state cracking stress for each shear-lag model of SiC/CAS(ξd=0, Vf=34vol%)

    ACK—Aveston, Cooper and Kelly initials; BHE—Budiansky, Hutchinson and Evans initials

    图  7  SiC/CAS的BHE模型与库仑摩擦剪滞模型ld对比图(ξd=0、Vf=34vol%)

    Figure  7.  Comparison of BHE model and Coulomb friction shear-lag model for ld (ξd=0, Vf=34vol%) of SiC/CAS

    图  8  SiC/CAS库仑摩擦剪滞模型不同泊松比v的基体稳态开裂应力关系图(ξd=0、Vf=34vol%)

    Figure  8.  Relationship between Poisson’s ratio v and matrix steady-state cracking stress of SiC/CAS using Coulomb friction shear-lag model(ξd=0, Vf=0.34vol%)

    图  9  SiC/CAS库仑摩擦剪滞模型不同泊松比v的基体稳态开裂脱粘长度关系图(ξd=0、Vf=34vol%)

    Figure  9.  Relationship between the steady-state cracking stress debonding length ld and Poisson’s ratio v of SiC/CAS using Coulomb friction shear-lag model (ξd=0, Vf=34vol%)

    图  10  SiC/CAS的各剪滞模型纤维体积分数Vf与基体稳态开裂应力关系图(ξd=0、μ=1、基体泊松比νm=0.25)

    Figure  10.  Relationship between fiber volume fraction Vf and matrix steady-state cracking stress of each shear-lag model of SiC/CAS(ξd=0, μ=1, Poisson's ratio of matrix νm=0.25)

    图  11  SiC/CAS的各剪滞模型纤维体积分数与稳态开裂脱粘长度ld关系图(ξd=0、μ=1、νm=0.25)

    Figure  11.  Relationship between fiber volume fraction and steady-state cracking debonding length ld for each shear-lag model of SiC/CAS(ξd=0, μ=1, νm=0.25)

    图  12  SiC/CAS复合材料不同韧度比下界面剪应力对基体稳态开裂应力的影响(Vf=34vol%)

    Figure  12.  Effect of interfacial shear stress on matrix steady-state cracking stress of SiC/CAS composites under different toughness ratios (Vf=34vol%)

    图  13  SiC/CAS复合材料不同韧度比下界面剪应力对界面脱粘长度的影响(Vf=34vol%)

    Figure  13.  Effect of interfacial shear stress on interfacial debonding length under different toughness ratios of SiC/CAS composites (Vf=34vol%)

    图  14  两种剪滞模型对SiC/CAS单轴拉伸的应力-应变曲线模拟

    Figure  14.  Simulation of stress-strain curves of two shear-lag models for uniaxial tension of SiC/CAS

    图  15  不同界面剪切力对SiC/CAS单轴拉伸应力-应变曲线的影响

    Figure  15.  Effect of different interfacial shear forces on uniaxial tensile stress-strain curves of SiC/CAS

    图  16  不同界面剪切力对SiC/CAS单轴拉伸时裂纹密度的影响

    Figure  16.  Effect of different interfacial shear forces on the crack density of SiC/CAS under uniaxial tension

    图  17  不同相对韧度对SiC/CAS单轴拉伸应力-应变曲线的影响

    Figure  17.  Effect of different relative toughness on uniaxial tensile stress-strain curve of SiC/CAS

    图  18  不同纤维体积分数Vf对SiC/CAS单轴拉伸应力-应变曲线的影响

    Figure  18.  Effect of different fiber volume fraction Vf on uniaxial tensile stress-strain curve of SiC/CAS

    图  19  不同泊松比(ν=νm=νf)对SiC/CAS单轴拉伸应力-应变曲线的影响

    Figure  19.  Effect of different Poisson’s ratio (ν=νm=νf) on uniaxial tensile stress-strain curve of SiC/CAS

    νf—Poisson's ratio of fibers

    图  20  单向SiC/CAS在单轴拉伸下试验和理论预测的应力-应变曲线[24,38]

    Figure  20.  Experimental and theoretically predicted stress-strain curves of uniaxial SiC/CAS[24,38] under uniaxial tension

    图  21  单向SiC/CAS在单轴拉伸下试验和理论预测的应力-应变曲线[24,39]

    Figure  21.  Experimental and theoretically predicted stress-strain curves of uniaxial SiC/CAS[24,39] under uniaxial tension

    图  22  单向 SiC/CAS-II单轴拉伸下试验和理论预测的应力-应变曲线[24,40]

    Figure  22.  Experimental and theoretically predicted stress-strain curves of uniaxial SiC/CAS-II[24,40] under uniaxial tension

    表  1  单向纤维增强陶瓷基复合材料(CMCs)各组分参数

    Table  1.   Parameters of constituents of unidirectional fiber reinforced ceramic matrix composites (CMCs)

    SiC/CAS[24,38]SiC/CAS[24,39]SiC/CAS-II[24,40]
    Radius of the fiber a/μm7.57.57.5
    Fiber volume fraction Vf/vol%343730
    Fibre elastic modulusEf /GPa190200200
    Elastic modulus of matrix Em/GPa909798
    Fracture energy of matrix ξm/(J·m-2)666
    Debonding energy of interface ξd/(J·m-2)0.80.40.4
    Thermal expansion coefficient of fiber αf/℃−13.3×10−64×10−64×10−6
    Thermal expansion coefficient of matrix αm/℃−14.6×10−65×10−65×10−6
    Temperature difference between composite
    preparation and working condition ΔT/℃
    −1000−1000−1000
    Weibull modulus of matrix m557
    Constant frictional shear stress τs/MPa101520
    Weibull modulus of fiber mf3.63.63.0
    Matrix characteristic strength σc/MPa2.02.02.0
    Final strength of composites σUTS/MPa
    (Experiment)
    395447350
    Final strength of composites σUTS/MPa
    (Theory)
    464.76505.77399.63
    Error/%17.6613.1514.18
    下载: 导出CSV
  • [1] 文生琼, 何爱杰. 陶瓷基复合材料在航空发动机热端部件上的应用[J]. 航空制造技术, 2009(S1):4-7. doi: 10.3969/j.issn.1671-833X.2009.z1.003

    WEN Shengqiong, HE Aijie. Application of ceramic matrix composites in aero-engine hot-end components[J]. Aviation Manufacturing Technology,2009(S1):4-7(in Chinese). doi: 10.3969/j.issn.1671-833X.2009.z1.003
    [2] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials,2007,371(1-3):329-377. doi: 10.1016/j.jnucmat.2007.05.016
    [3] UDAYAKUMAR A, SRI GANESH A, RAJA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI[J]. Journal of the European Ceramic Society,2011,31(6):1145-1153. doi: 10.1016/j.jeurceramsoc.2010.12.018
    [4] MADAR R. Materials science: Silicon carbide in contention[J]. Nature,2004,430(7003):974-975. doi: 10.1038/430974a
    [5] EVANS A G. Perspective on the development of high-toughness ceramics[J]. Journal of the American Ceramic Society,1990,73(2):187-206. doi: 10.1111/j.1151-2916.1990.tb06493.x
    [6] 袁钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. 无机材料学报, 2016, 31(11):1157-1165. doi: 10.15541/jim20160119

    YUAN Qin, SONG Yongcai. Research progress of continuous SiC fibers and SiCf/SiC composites[J]. Journal of Inorganic Materials,2016,31(11):1157-1165(in Chinese). doi: 10.15541/jim20160119
    [7] BHEEMREDDY V, CHANDRASHEKHARA K, DHARANI L R, et al. Computational study of micromechanical damage behavior in continuous fiber-reinforced ceramic composites[J]. Journal of Materials Science,2016,51(18):8610-8624. doi: 10.1007/s10853-016-0120-4
    [8] LI L. Fatigue life prediction of fiber-reinforced ceramic-matrix composites with different fiber preforms at room and elevated temperatures[J]. Materials,2016,9(3):207. doi: 10.3390/ma9030207
    [9] DICARLO J A. Advances in SiC/SiC composites for aero-propulsion[M]//BANSAL N P, LAMON J. HOBOKEN. Ceramic matrix composites: Materials, modeling and technology, New York: John Wiley & Sons., Inc., 2014: 217-235.
    [10] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on sustainable development strategy of continuous fiber toughened ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [11] 胡海峰, 张玉娣, 邹世钦, 等. SiC/SiC复合材料及其在航空发动机上的应用[J]. 航空制造技术, 2010(6):90-91. doi: 10.3969/j.issn.1671-833X.2010.06.021

    HU Haifeng, ZHANG Yudi, ZOU Shiqin, et al. SiC/SiC composite material and its application in aero-engine[J]. Aviation Manufacturing Technology,2010(6):90-91(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.06.021
    [12] 邹世钦, 张长瑞, 周新贵, 等. 碳纤维增强SiC陶瓷复合材料的研究进展[J]. 高科技纤维与应用, 2003(2):15-20. doi: 10.3969/j.issn.1007-9815.2003.02.004

    ZOU Shiqin, ZHANG Changrui, ZHOU Xingui, et al. Research progress of carbon fiber reinforced SiC ceramic composites[J]. High-tech Fibers and Applications,2003(2):15-20(in Chinese). doi: 10.3969/j.issn.1007-9815.2003.02.004
    [13] 方光武, 高希光, 宋迎东. 单向纤维增强陶瓷基复合材料界面滑移规律[J]. 复合材料学报, 2013, 30(4):101-107. doi: 10.13801/j.cnki.fhclxb.2013.04.023

    FANG Guangwu, GAO Xiguang, SONG Yingdong. Interfacial slip law of unidirectional fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2013,30(4):101-107(in Chinese). doi: 10.13801/j.cnki.fhclxb.2013.04.023
    [14] BRAGINSKY M, PRZYBYLA C P. Simulation of crack propagation/deflection in ceramic matrix continuous fiber reinforced composites with weak interphase via the extended finite element method[J]. Composite Structures,2016,136:538-545.
    [15] MEYER P, WAAS A M. Mesh-objective two-scale finite element analysis of damage and failure in ceramic matrix composites[J]. Integrating Materials and Manufacturing Innovation,2015,4(1):63-80. doi: 10.1186/s40192-015-0034-z
    [16] GAO X, FANG G, SONG Y. Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J]. Composites Part B: Engineering,2014,56:92-99. doi: 10.1016/j.compositesb.2013.08.063
    [17] 方光武, 高希光, 宋迎东. 多层界面相陶瓷基复合材料裂纹偏转机制模拟[J]. 航空动力学报, 2019, 34(8):1805-1812. doi: 10.13224/j.cnki.jasp.2019.08.021

    FANG Guangwu, GAO Xiguang, SONG Yingdong. Simulation of crack deflection mechanism of multi-layer interface phase ceramic matrix composites[J]. Journal of Aerodynamics,2019,34(8):1805-1812(in Chinese). doi: 10.13224/j.cnki.jasp.2019.08.021
    [18] 杨成鹏, 矫桂琼, 王波. 界面性能对陶瓷基复合材料拉伸强度的影响[J]. 无机材料学报, 2009, 24(5):919-923. doi: 10.3724/SP.J.1077.2009.00919

    YANG Chengpeng, JIAO Guiqiong, WANG Bo. Influence of interface properties on tensile strength of ceramic matrix composites[J]. Journal of Inorganic Materials,2009,24(5):919-923(in Chinese). doi: 10.3724/SP.J.1077.2009.00919
    [19] EVANS A G. Overview No.125 design and life prediction issues for high-temperature engineering ceramics and their composites[J]. Acta Materialia,1997,45(1):23-40. doi: 10.1016/S1359-6454(96)00143-7
    [20] OKABE T, TAKEDA N, KOMOTORI J, et al. A new fracture mechanics model for multiple matrix cracks of SiC fiber reinforced brittle-matrix composites[J]. Acta Materialia,1999,47(17):4299-4309. doi: 10.1016/S1359-6454(99)00309-2
    [21] KIM R Y, PAGANO N J. Crack initiation in unidirectional brittle-matrix composites[J]. Journal of the American Ceramic Society,1991,74(5):1082-1090. doi: 10.1111/j.1151-2916.1991.tb04346.x
    [22] BENT F S, TALREJA R. Analysis of damage in a ceramic matrix composite[J]. International Journal of Damage Mechanics,1993,2(3):246-271. doi: 10.1177/105678959300200305
    [23] HOLMES J W, SHULER S F. Temperature rise during fatigue of fibre-reinforced ceramics[J]. Journal of Materials Science Letters,1990,9(11):1290-1291. doi: 10.1007/BF00726522
    [24] 李龙彪. 长纤维增强陶瓷基复合材料疲劳损伤模型与寿命预测[D]. 南京: 南京航空航天大学, 2010.

    LI Longbiao. Fatigue damage model and life prediction of long fiber reinforced ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [25] LI L. Modelling matrix multi-cracking evolution of fibre-reinforced ceramic-matrix composites considering fibre fracture[J]. Ceramics Silikaty,2019,63(1):21-31. doi: 10.13168/cs.2018.0042
    [26] CURTIN W A. Theory of mechanical properties of ceramic-matrix composites[J]. Journal of the American Ceramic Society,1991,74(11):2837-2845. doi: 10.1111/j.1151-2916.1991.tb06852.x
    [27] CURTIN W A, AHN B K, TAKEDA N. Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites[J]. Acta Materialia,1998,46(10):3409-3420. doi: 10.1016/S1359-6454(98)00041-X
    [28] AHN B K, CURTIN W A, PARTHASARATHY T A, et al. Criteria for crack deflection/penetration criteria for fiber-reinforced ceramic matrix composites[J]. Composites Science and Technology,1998,58(11):1775-1784. doi: 10.1016/S0266-3538(98)00043-8
    [29] SØRENSEN B F, TALREJA R, SØRENSEN O T. Micromechanical analysis of damage mechanisms in ceramic-matrix composites during mechanical and thermal cycling[J]. Composites,1993,24(2):129-140. doi: 10.1016/0010-4361(93)90009-W
    [30] AVESTON J, KELLY A. Theory of multiple fracture of fibrous composites[J]. Journal of Materials Science,1973,8(3):352-362. doi: 10.1007/BF00550155
    [31] BUDIANSKY B, HUTCHINSON J W, EVANS A G. Matrix fracture in fiber-reinforced ceramics[J]. Journal of the Mechanics and Physics of Solids,1986,34(2):167-189. doi: 10.1016/0022-5096(86)90035-9
    [32] CHIANG Y. On fiber debonding and matrix cracking in fiber-reinforced ceramics[J]. Composites Science and Technology,2001,61(12):1743-1756. doi: 10.1016/S0266-3538(01)00078-1
    [33] GAO Y C, MAI Y W, COTTERELL B. Fracture of fiber-reinforced materials[J]. Journal of Applied Mathematics and Physics,1988,39(4):550-572.
    [34] HUTCHINSON J W, JENSEN H M. Models of fiber debonding and pullout in brittle composites with friction[J]. Mechanics of Materials, 1990, 9(2): 139-163.
    [35] HSUEH C H. Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites[J]. Materials Science and Engineering: A, 1990, 123(1): 1-11.
    [36] KUNTZ M, GRATHWOHL G. Coulomb friction controlled bridging stresses and crack resistance of ceramic matrix composites[J]. Materials Science and Engineering: A, 1998, 250: 313-319.
    [37] CHIANG Y. On a matrix cracking model using Coulomb’s friction law[J]. Engineering Fracture Mechanics,2007,74(10):1602-1616. doi: 10.1016/j.engfracmech.2006.09.006
    [38] PRYCE A W, SMITH P A. Behaviour of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading[J]. Journal of Materials Science,1992,27(10):2695-2704. doi: 10.1007/BF00540692
    [39] BEYERLE D S, SPEARING S M, ZOK F W, et al. Damage and failure in unidirectional ceramic-matrix composites[J]. Journal of the American Ceramic Society,1992,75(10):2719-2725. doi: 10.1111/j.1151-2916.1992.tb05495.x
    [40] SØRENSEN B F, HOLMES J W. Effect of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite[J]. Journal of the American Ceramic Society,1996,79(2):313-320. doi: 10.1111/j.1151-2916.1996.tb08122.x
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  331
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 修回日期:  2022-09-12
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-09-28
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回