留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯乙烯-马来酸酐共聚物对PLA/PBAT共混物的相形态及其性能的影响

莫智翔 刘小超 刘跃军 毛旭升 郑伟

莫智翔, 刘小超, 刘跃军, 等. 苯乙烯-马来酸酐共聚物对PLA/PBAT共混物的相形态及其性能的影响[J]. 复合材料学报, 2023, 40(4): 2096-2106. doi: 10.13801/j.cnki.fhclxb.20220630.001
引用本文: 莫智翔, 刘小超, 刘跃军, 等. 苯乙烯-马来酸酐共聚物对PLA/PBAT共混物的相形态及其性能的影响[J]. 复合材料学报, 2023, 40(4): 2096-2106. doi: 10.13801/j.cnki.fhclxb.20220630.001
MO Zhixiang, LIU Xiaochao, LIU Yuejun, et al. Effect of styrene-maleic anhydride on phase morphology and properties of PLA/PBAT blends[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2096-2106. doi: 10.13801/j.cnki.fhclxb.20220630.001
Citation: MO Zhixiang, LIU Xiaochao, LIU Yuejun, et al. Effect of styrene-maleic anhydride on phase morphology and properties of PLA/PBAT blends[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2096-2106. doi: 10.13801/j.cnki.fhclxb.20220630.001

苯乙烯-马来酸酐共聚物对PLA/PBAT共混物的相形态及其性能的影响

doi: 10.13801/j.cnki.fhclxb.20220630.001
基金项目: 国家自然科学基金(11872179);湖南省自然科学基金(2020JJ5137);湖南省教育厅科学研究项目(19A138;19B152)
详细信息
    通讯作者:

    刘小超,博士,讲师,硕士生导师,研究方向为高分子材料加工工程、先进包装材料与技术 E-mail: xcliu_2014@163.com

  • 中图分类号: TB332

Effect of styrene-maleic anhydride on phase morphology and properties of PLA/PBAT blends

Funds: National Natural Science Foundation of China (11872179); Natural Science Foundation of Hunan Province (2020JJ5137); Scientific Research Project of Education Department of Hunan Province (19A138; 19B152)
  • 摘要: 聚己二酸-对苯二甲酸丁二酯(PBAT)具有很好的延展性,但其强度较低,而聚乳酸(PLA)高模量可以解决PBAT的缺陷。以苯乙烯-马来酸酐共聚物(SMA)为增容剂,通过双螺杆挤出机制备了PLA/ PBAT共混物,研究了不同含量的SMA对PLA/PBAT共混物的结晶性能、热性能、流变行为及拉伸性能的影响。结果表明:SMA能显著降低分散相PLA的粒径大小,在SMA含量为1.5wt%时变化最明显,PLA的粒径从1.75 μm降低到0.60 μm;SMA能促进PBAT的结晶,随着SMA含量增加,PBAT的结晶度呈现先增大后降低的趋势,当SMA含量为2wt%时,PBAT的结晶度达到最大为9.22%;通过Han曲线发现,在SMA含量较低时,共混物更接近均质物,随着SMA含量提高,共混物的弹性行为增强;SMA能够提高PLA/PBAT共混物的拉伸性能,随着SMA含量增加,拉伸强度与断裂伸长率都呈现先增大后减小的趋势,但总体高于未加SMA时的拉伸强度与断裂伸长率,SMA含量为1.5wt%时,拉伸强度相对于未添加SMA时,从18.1 MPa增加到21.8 MPa,提高了21%,断裂伸长率在SMA含量为1wt%时达到最大,为433.7%,相对未添加SMA时提高了25%。

     

  • 图  1  反应性熔融共混的分子间反应

    Figure  1.  Chemical reaction during reactive blending

    图  2  不同苯乙烯-马来酸酐共聚物(SMA)含量的PLA/PBAT共混物的FTIR图谱

    Figure  2.  FTIR spectra of PLA/PBAT blends with different SMA contents

    图  3  PLA/PBAT共混物的脆断截面SEM图像及PLA的粒径分布直方图:(a) PLA/PBAT;(b) PLA/PBAT-0.5wt%SMA;(c) PLA/PBAT-1wt%SMA;(d) PLA/PBAT-1.5wt%SMA;(e) PLA/PBAT-2wt%SMA;(f) PLA/PBAT-3wt%SMA

    Figure  3.  SEM images showing fracture surface of PLA/PBAT blends and particle size distribution histogram: (a) PLA/PBAT; (b) PLA/PBAT-0.5wt%SMA; (c) PLA/PBAT-1wt%SMA; (d) PLA/PBAT-1.5wt%SMA; (e) PLA/PBAT-2wt%SMA; (f) PLA/PBAT-3wt%SMA

    图  4  不同SMA含量的PLA/PBAT共混物的DSC曲线:(a) 第二次升温曲线;(b) 降温曲线

    Figure  4.  DSC curves of PLA/PBAT blends with different SMA contents: (a) Second heating procedure; (b) Cooling

    图  5  不同SMA含量的PLA/PBAT共混物的XRD图谱

    Figure  5.  XRD spectra of PLA/PBAT blends with different SMA contents

    图  6  不同SMA含量的PLA/PBAT共混物的TGA曲线

    Figure  6.  TGA curves of PLA/PBAT blends with different SMA contents

    图  7  PLA/PBAT共混物的表观黏度与剪切速率关系:(a) 不同SMA含量(温度T=190℃);(b) 不同温度T (PLA/PBAT-1.5wt%SMA)

    Figure  7.  Apparent viscosity versus shear rate curves of PLA/PBAT blends: (a) Different SMA contents (temperature T=190℃); (b) Different temperatures T (PLA/PBAT-1.5wt%SMA)

    图  8  PLA/PBAT共混物的剪切应力与剪切速率的关系(T=190℃)

    Figure  8.  Shear stress versus shear rate curves of PLA/PBAT blends (T=190℃)

    图  9  不同SMA含量PLA/PBAT共混物的动态频率扫描曲线:(a) 储能模量G';(b) 损耗模量G'';(c) 复数黏度η*

    Figure  9.  Curves of dynamic frequency sweep for PLA/PBAT blends with different SMA contents: (a) Storage modulus G'; (b) Loss modulus G''; (c) Complex viscosity η*

    ω—Angular frequency

    图  10  不同SMA含量的PLA/PBAT共混物的Han曲线

    Figure  10.  Han plots of PLA/PBAT blends with different SMA contents

    图  11  不同SMA含量PLA/PBAT共混物的损耗因子(tanδ)与角频率(ω)的关系

    Figure  11.  Loss factor (tanδ) versus angle frequency (ω) curves of PLA/PBAT blends with different SMA contents

    图  12  不同SMA含量PLA/PBAT共混物的拉伸强度与断裂伸长率 (a) 和拉伸应力-应变曲线 (b)

    Figure  12.  Tensile strength and elongation at break (a) and tensile stress-strain curves (b) of PLA/PBAT blends with different SMA contents

    表  1  聚乳酸/聚己二酸-对苯二甲酸丁二酯(PLA/PBAT)共混物的原料配比

    Table  1.   Compositions of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) (PLA/PBAT) blends

    SamplePBAT/wt%PLA/wt%SMA/wt%
    PBAT 100.0 0 0.0
    PLA 0.0 100 0.0
    PLA/PBAT 75.0 25 0.0
    PLA/PBAT-0.5wt%SMA 74.5 25 0.5
    PLA/PBAT-1wt%SMA 74.0 25 1.0
    PLA/PBAT-1.5wt%SMA 73.5 25 1.5
    PLA/PBAT-2wt%SMA 73.0 25 2.0
    PLA/PBAT-3wt%SMA 72.0 25 3.0
    Note: SMA—Copolymer of styrene and maleic anhydride.
    下载: 导出CSV

    表  2  不同SMA含量的PLA/PBAT共混物中分散相PLA的平均粒径

    Table  2.   Mean diameter of PLA in PLA/PBAT blends with different SMA contents

    SamplePLA/PBATPLA/PBAT-0.5wt%SMAPLA/PBAT-1wt%SMAPLA/PBAT-1.5wt%SMAPLA/PBAT-2wt%SMAPLA/PBAT-3wt%SMA
    Mean diameter/μm1.751.431.400.600.660.61
    下载: 导出CSV

    表  3  不同SMA含量的PLA/PBAT共混物的DSC热分析数据

    Table  3.   DSC thermal analysis data of PLA/PBAT blends with different SMA contents

    SampleTm/℃Tc/℃Hm/(J·g−1)Xc/%
    PBATPLAPBATPLAPBATPLA
    PBAT122.9858.5815.6213.70
    PLA152.466.12 0.61
    PLA/PBAT125.41151.7277.835.412.72 6.3211.68
    PLA/PBAT-0.5wt%SMA124.43153.6677.736.270.23 7.38 1.01
    PLA/PBAT-1wt%SMA125.69153.1277.706.530.25 7.74 1.06
    PLA/PBAT-1.5wt%SMA125.09153.9376.906.980.19 8.33 0.83
    PLA/PBAT-2wt%SMA124.5473.457.68 9.22
    PLA/PBAT-3wt%SMA124.3871.687.12 8.68
    Notes: Tm and Tc—Melting peak temperature and the crystallization peak temperature; △Hm and Xc—Melting enthalpy and crystallinity.
    下载: 导出CSV

    表  4  不同PLA/PBAT共混物的热稳定性

    Table  4.   Thermal stability of different PLA/PBAT blends

    SampleT5wt%/℃T50wt%/℃
    PBAT372.3413.9
    PLA336.7365.4
    PLA/PBAT347.5401.2
    PLA/PBAT-0.5wt%SMA349.3402.1
    PLA/PBAT-1wt%SMA344.5401.8
    PLA/PBAT-1.5wt%SMA347.1401.5
    PLA/PBAT-2wt%SMA348.9402.2
    PLA/PBAT-3wt%SMA348.7402.0
    Notes: T5wt% and T50wt%—Temperature when the mass loss of the samples is 5wt% and 50wt%, respectively.
    下载: 导出CSV

    表  5  不同SMA含量的PLA/PBAT共混物的非牛顿指数${\boldsymbol{n}} $

    Table  5.   Non-Newtonian index ${\boldsymbol{n}} $ of PLA/PBAT blends with different SMA contents

    Samplen
    PLA/PBAT0.627
    PLA/PBAT-0.5wt%SMA0.638
    PLA/PBAT-1wt%SMA0.611
    PLA/PBAT-1.5wt%SMA0.573
    PLA/PBAT-2wt%SMA0.595
    PLA/PBAT-3wt%SMA0.537
    Note: Non-Newtonian index (n) was calculated from the linear fitting of the lnηa versus ln$ \dot{\gamma } $ curve at high shear rates.
    下载: 导出CSV
  • [1] ARSLAN A, AKMAK S, CENGIZ A, et al. Poly(butylene adipate-co-terephthalate) scaffolds: Processing, structural characteristics and cellular responses[J]. Journal of Biomaterials Science, Polymer Edition,2016,27(18):1841-1859. doi: 10.1080/09205063.2016.1239945
    [2] SHEN S, DUHME M, KOPITZKY R J M. Uncompatibilized PBAT/PLA blends: Manufacturability, miscibility and properties[J]. Materials,2020,13(21):4897. doi: 10.3390/ma13214897
    [3] NOFAR M, MAANI A, SOJOUDI H, et al. Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow[J]. Journal of Rheology,2015,59(2):317-333. doi: 10.1122/1.4905714
    [4] LILIANE C A, MARINA M, ROSARIO E S B, et al. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends[J]. Polymer Testing,2015,43:27-37. doi: 10.1016/j.polymertesting.2015.02.005
    [5] PALSIKOWSKI P A, ROBERTO M M, SOMMAGGIO L, et al. Ecotoxicity evaluation of the biodegradable polymers PLA, PBAT and its blends using allium cepa as test organism[J]. Journal of Polymers and the Environment,2018,26(3):938-945. doi: 10.1007/s10924-017-0990-9
    [6] ZHAO X P, HU H, WANG X, et al. Super tough poly(lactic acid) blends: A comprehensive review[J]. RSC Advances,2020,10(22):13316-13368. doi: 10.1039/D0RA01801E
    [7] NUNES F C, RIBEIRO K C, MARTINI F A, et al. PBAT/PLA/cellulose nanocrystals biocomposites compatibilized with polyethylene grafted maleic anhydride (PE-g-MA)[J]. Journal of Applied Polymer Science,2021,138(45):51342. doi: 10.1002/app.51342
    [8] PHETWAROTAI W, TANRATTANAKUL V, PHUSUNTI N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films[J]. Chinese Journal of Polymer Science,2016,34(9):1129-1140. doi: 10.1007/s10118-016-1834-0
    [9] PUKPANTA P, SIRISINHA K J. Properties of poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends in the presence of antioxidant[J]. Advanced Materials Research,2012,506:126-129. doi: 10.4028/www.scientific.net/AMR.506.126
    [10] REN Y, HU J, YANG M, et al. Biodegradation behavior of poly(lactic acid)(PLA), poly(butylene adipate-co-terephthalate)(PBAT), and their blends under digested sludge conditions[J]. Journal of Polymers and the Environment,2019,27(12):2784-2792. doi: 10.1007/s10924-019-01563-3
    [11] ROSSIN A, CAETANO J, ZANELLA H G, et al. Obtaining and characterization of PBAT/PLA fibers containing zinc phthalocyanine prepared by the electrospinning method[J], Journal of Thermal Analysis and Calorimetry, 2022, 147(7): 4579-4587.
    [12] SIGNORI F, COLTELLI M B, BRONCO S. Thermal degradation of poly(lactic acid)(PLA) and poly(butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing[J]. Polymer Degradation and Stability,2009,94(1):74-82. doi: 10.1016/j.polymdegradstab.2008.10.004
    [13] TORRES S, NAVIA R, MURDY R C, et al. Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): Processing and plasticization[J]. ACS Sustainable Chemistry & Engineering,2015,3(4):614-624.
    [14] HE H, WANG G, CHEN M, et al. Effect of different compatibilizers on the properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends prepared under intense shear flow field[J]. Materials, 2020, 13(9): 2094.
    [15] LIU W, LIU T, LIU H, et al. Properties of poly(butylene adipate-co-terephthalate) and sunflower head residue biocomposites[J]. Journal of Applied Polymer Science,2017,134(13):44644. doi: 10.1002/app.44644
    [16] RIGOLIN T R, COSTA L C, CHINELATTO M A, et al. Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipate-co-terephthalate) blends[J]. Polymer Testing,2017,63:542-549. doi: 10.1016/j.polymertesting.2017.09.010
    [17] TEAMSINSUNGVON A, JARAPANYACHEEP R, RUKASAKULPIWAT Y, et al. Melt processing of maleic anhydride grafted poly(lactic acid) and its compatibilizing effect on poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend and their composite[J]. Polymer Science,2017,59(3):384-396.
    [18] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Determination of tensile properties of plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [19] AL-ITRY R, LAMNAWAR K, MAAZOUZ A, et al. Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state[J]. European Polymer Journal,2015,68:288-301. doi: 10.1016/j.eurpolymj.2015.05.001
    [20] PHETWAROTAI W, ZAWONG M, PHUSUNTI N, et al. Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: Influence of compatibilization[J]. International Journal of Biological Macromolecules,2021,183:346-357. doi: 10.1016/j.ijbiomac.2021.04.172
    [21] HUA Y, LIU Z, JIE R. Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend[J]. Polymer Engineering & Science,2010,49(5):1004-1012.
    [22] YUE D, BO L, WANG P, et al. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends[J]. Polymer Degradation and Stability,2018,147:41-48.
    [23] LEE L T, WOO E M, CHEN W T, et al. Phase behavior and interactions in blends of poly[(butylene adipate)-co-poly(butylene terephthalate)] copolyester with poly(4-vinyl phenol)[J]. Colloid and Polymer Science, 2010, 288(4): 439-448.
    [24] PAN H, LI Z, JIA Y, et al. The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends[J]. RSC Advances,2018,8(9):4610-4623. doi: 10.1039/c7ra10745e
    [25] COSTA A R M, ITO E N, Cavalho L H, et al. Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terephthalate) and its mixture[J]. Polímeros, 2019, 29(1): 11217.
    [26] HE H Z, LIU B D, XUE B, et al. Preparation, mechanical, and thermal properties of PLA/PBAT/EGMA blends[J]. Key Engineering Materials,2018,783:18-22. doi: 10.4028/www.scientific.net/KEM.783.18
    [27] YEH J T, TSOU C H, HUANG C Y, et al. Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends[J]. Journal of Applied Polymer Science,2010,116(2):680-687.
    [28] KUMAR M, MOHANTY S, NAYAK S K, et al. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites[J]. Bioresource Technology,2010,101(21):8406-8415. doi: 10.1016/j.biortech.2010.05.075
    [29] ZHOU Z B, LIU Y J. Crystallization and rheological properties of PLA/PBAT/modified nano-SiO2 composites[J]. Journal of Chemical Engineering of Chinese Universities,2016,30(6):1411-1418.
    [30] PHETWAROTAI W, TANRATTANAKUL V, PHUSUNTI N, et al. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films[J]. Chinese Journal of Polymer Science,2016,34:1129-1140.
    [31] XIANG S, FENG L, BIAN X, et al. Evaluation of PLA content in PLA/PBAT blends using TGA[J]. Polymer Testing,2020,81:106211. doi: 10.1016/j.polymertesting.2019.106211
    [32] NOFAR M, HEUZEY M C, CARREAU P J, et al. Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow[J]. Polymer,2016,98:353-364. doi: 10.1016/j.polymer.2016.06.044
    [33] ZHANG Y, WU S, ZHONG Y, et al. Effect of multi-functional epoxy chain extender on properties of PLA reinforced PBAT blend[J]. Engineering Plastics Application,2018,46(2):7-11, 15.
    [34] SHAHLARI M, LEE S. Morphology and rheological properties of poly(butylene adipate-co-terephthalate) and poly(lactic acid)/clay composites[C]//Annual Technical Conference-ANTEC, Conference Proceedings, Society of Plastics Engineers, 2011: 295-300.
    [35] ZHAO Y, ZHAO B, WEI B, et al. Enhanced compatibility between poly(lactic acid) and poly (butylene adipate-co-terephthalate) by incorporation of N-halamine epoxy precursor[J]. International Journal of Biological Macromolecules, 2020, 165: 460-471.
    [36] ZHAO J, LI X, PAN H, et al. Rheological, thermal and mechanical properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate)/poly(propylene carbonate) polyurethane trinary blown films[J]. Polymer Bulletin,2020,77(73):1-24.
    [37] ZHANG Y, JIA S, PAN H, et al. Effect of glycidyl methacrylate-grafted poly(ethylene octene) on the compatibility in PLA/PBAT blends and films[J]. Korean Journal of Chemical Engineering,2021,38(8):1746-1755.
    [38] SONG J, MI J, ZHOU H, et al. Chain extension of poly (butylene adipate-co-terephthalate) and its microcellular foaming behaviors[J]. Polymer Degradation and Stability,2018,157:143-152. doi: 10.1016/j.polymdegradstab.2018.10.009
    [39] DENG Y, YU C, PEANGPATU W, et al. Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology[J]. Journal of Polymers and the Environment,2018,26(9):3802-3816. doi: 10.1007/s10924-018-1256-x
    [40] PHATTARATEERA S, JUNSOOK N, KUMSANG P, et al. The ternary blends of TPS/PBAT/PLA films: A study on the morphological and mechanical properties[J]. Key Engineering Materials,2020,861(9):170-175.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  585
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-23
  • 录用日期:  2022-06-10
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回