留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene及其复合材料的抗菌纺织品研究进展

李艳艳 赵立环 杨玉洁

李艳艳, 赵立环, 杨玉洁. MXene及其复合材料的抗菌纺织品研究进展[J]. 复合材料学报, 2023, 40(4): 1896-1912. doi: 10.13801/j.cnki.fhclxb.20220627.002
引用本文: 李艳艳, 赵立环, 杨玉洁. MXene及其复合材料的抗菌纺织品研究进展[J]. 复合材料学报, 2023, 40(4): 1896-1912. doi: 10.13801/j.cnki.fhclxb.20220627.002
LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress on antibacterial textiles of MXene and its composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1896-1912. doi: 10.13801/j.cnki.fhclxb.20220627.002
Citation: LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress on antibacterial textiles of MXene and its composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1896-1912. doi: 10.13801/j.cnki.fhclxb.20220627.002

MXene及其复合材料的抗菌纺织品研究进展

doi: 10.13801/j.cnki.fhclxb.20220627.002
基金项目: 中国纺织工业联合会科技指导性计划项目(2021065)
详细信息
    通讯作者:

    赵立环,博士,副教授,硕士生导师,研究方向为医用功能型纺织品的设计与制备 E-mail: zhaolihuan@tiangong.edu.cn

  • 中图分类号: TS195.5

Research progress on antibacterial textiles of MXene and its composite materials

Funds: Science and Technology Steering Program Project of China National Textile and Apparel Council (2021065)
  • 摘要: MXene材料是一类具有二维层状结构的过渡金属碳化物、氮化物或碳氮化物的二维纳米材料,因其优异的物理、化学性能在生物传感、癌症光热疗法、抗菌等方面已经得到广泛应用。基于MXene抗菌性的研究现状,探究了MXene及其复合材料的抗菌机制,阐述了MXene及其复合材料的抗菌性能及其抗菌整理织物、抗菌纤维和抗菌敷料的研究进展,最后提出了基于MXene及其复合材料的抗菌纺织品未来研究方向。

     

  • 图  1  (a) MAX相Mn+1AXn的元素组成[28];(b) MAX相的结构和相应的MXene[22]

    Figure  1.  (a) Elemental composition of the MAX phase Mn+1AXn[28]; (b) Structure of MAX phases and the corresponding MXene[22]

    图  2  MXene纳米片抗菌机制(MOA)的示意图[65]:(a) 纳米片与细菌细胞的相互作用导致细菌DNA的释放,最终导致细菌的解体;(b) MXene纳米片通过切割细菌细胞壁进入细菌细胞质区域

    Figure  2.  Schematic representation of our proposed antibacterial mode-of-action (MOA) of MXene nanosheets[65]: (a) Interactions of the nanosheets with bacteria cells result in the release of bacteria DNA and eventually bacteria dispersion; (b) MXene sharp nanosheets get into the bacteria cytoplasmic region by cutting the bacteria cell wall

    PM—Peptidoglycan mesh; CM—Cytoplasmic membrane

    图  3  Nb-MXenes的制备及抗菌策略[68]

    Figure  3.  Preparation and antibacterial strategy of Nb-MXenes[68]

    图  4  Cu2O/MXene的合成过程示意图[74]

    Figure  4.  Schematic illustration of the synthesis process of Cu2O/MXene[74]

    PVP—Polyvinylpyrrolidone

    图  5  Cu2O/MXene协同抗菌机制示意图[74]

    Figure  5.  Schematic diagram of synergistic antibacterial mechanism of Cu2O/MXene[74]

    VB—Valence band; CB—Conduction band; ROS—Reactive oxygen species; EF—Fermi energy

    图  6  Ag/Ti3C2Tx复合材料光热增强抗菌性能原理图[75]

    Figure  6.  Schematic diagram of the photothermal-enhanced antibacterial performance of Ag/Ti3C2Tx composite[75]

    TMAOH—Tetramethylammonium hydroxide; CBAA—Carboxybetaine acrylamide; MBAA—N,N-methylenebisacrylamide; NIR—Near-infrared

    图  7  基于Mxene的混合抗菌平台(M-HAS)的研制[77]

    Figure  7.  Preparation of antibacterial platform MXene-based hybrid antibacterial system (M-HAS)[77]

    ML—Multilayer; DMSO—Dimethyl sulfoxide; FL—Few-layer; PEG—Polyethylene glycol

    图  8  功能复合表面涂层制备工艺示意图[82]

    Figure  8.  Schematic illustration of the fabrication process of the functional composited surface coatings[82]

    GPS—3-glycidyloxypropyltrimethoxysilane; Fas—1H,1H,2H,2H-perfluorooctyltrimethoxysilane

    图  9  环丙沙星(Cip)-Ti3C2 热敏水凝胶(TSG)同时实现高效杀菌和长期抑制效果示意图[87]

    Figure  9.  Schematic illustration of the ciprofloxacin (Cip)-Ti3C2 thermo-sensitive hydrogels (TSG) simultaneously achieving high efficiency sterilization and long-term inhibition effect [87]

    图  10  多功能防护型MXene/羟丙基三甲基氯化铵壳聚糖(HACC)织物的制备与应用示意图[92]

    Figure  10.  Diagram of preparation and application of multifunctional protective MXene/hydroxypropyltrimethyl ammonium chloride chitosan (HACC) fabric[92]

    图  11  面料在移动保健和医疗领域的潜在应用[94]

    Figure  11.  Potential applications in mobile healthcare and medical therapy fields[94]

    T—Temperature

    图  12  (a) Ti3AlC2中去除铝层以产生ML-Ti3C2Tx的原理图(经过洗涤、超声处理,Ti3C2Tx薄片分离成单层);(b) Ti3C2Tx薄片在壳聚糖(CS)纳米纤维中的取向[99]

    Figure  12.  (a) Schematic detailing the removal of the Al layers from the Ti3AlC2 to yield ML-Ti3C2Tx that washing, and sonication then separate into individual Ti3C2Tx flakes; (b) Schematic diagram illustrating the observed orientations of Ti3C2Tx flakes within the chitosan (CS) nanofibers[99]

    图  13  (a) 再生细菌纤维素(RBC)基水凝胶的制造;(b) RBC/MXene复合水凝胶合成机制图[102]

    Figure  13.  (a) Schematic sketch showing the fabrication of regenerative bacterial cellulose (RBC)-based hydrogels; (b) Diagram of the mechanism of synthesizing RBC/MXene composite hydrogels[102]

    ECH—Epichlorohydrin

    图  14  静电纺丝和抗菌治疗制备MXene-阿莫西林 (AMX)-聚乙烯醇(PVA)(MAP)纳米纤维膜示意图[106]

    Figure  14.  Preparation of MXene-amoxicillin (AMX)-polyvinyl alcohol(PVA) (MAP) nanofibrous membrane by electrospinning and antimicrobial therapy[106]

    NIR—Near-infrared irradiation

  • [1] HAN G, CEILLEY R. Chronic wound healing: A review of current management and treatments[J]. Advances in Therapy,2017,34(3):599-610. doi: 10.1007/s12325-017-0478-y
    [2] GAO Y, CRANSTON R. Recent advances in antimicrobial treatments of textiles[J]. Textile Research Journal,2008,78(1):60-72. doi: 10.1177/0040517507082332
    [3] WINDLER L, HEIGHT M, NOWACK B. Comparative evaluation of antimicrobials for textile applications[J]. Environment International,2013,53:62-73. doi: 10.1016/j.envint.2012.12.010
    [4] BSHENA O, HEUNIS T D J, DICKS L M T, et al. Antimicrobial fibers: Therapeutic possibilities and recent advances[J]. Future Medicinal Chemistry,2011,3(14):1821-1847. doi: 10.4155/fmc.11.131
    [5] CAI Z, SUN G. Antimicrobial finishing of acrilan fabrics with cetylpyridinium chloride: Affected properties and structures[J]. Journal of Applied Polymer Science,2005,97(3):1227-1236. doi: 10.1002/app.21261
    [6] YAZDANKHAH S P, SCHEIE A A, HOIBY E A, et al. Triclosan and antimicrobial resistance in bacteria: An overview[J]. Microbial Drug Resistance,2006,12(2):83-90. doi: 10.1089/mdr.2006.12.83
    [7] ORHAN M, KUT D, GUNESOGLU C. Use of triclosan as antibacterial agent in textiles[J]. Indian Journal of Fibre & Textile Research,2007,32(1):114-118.
    [8] PALZA H. Antimicrobial polymers with metal nanoparticles[J]. International Journal of Molecular Sciences,2015,16(1):2099-2116. doi: 10.3390/ijms16012099
    [9] VARESANO A, VINEIS C, ALUIGI A, et al. Antimicrobial polymers for textile products[J]. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances,2011,3:99-110.
    [10] CHIEN H W, CHIU T H. Stable N-halamine on polydopamine coating for high antimicrobial efficiency[J]. European Polymer Journal,2020,130:109654. doi: 10.1016/j.eurpolymj.2020.109654
    [11] BADAWY M E I, RABEA E I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection[J]. International Journal of Carbohydrate Chemistry,2011,2011:460381. doi: 10.1155/2011/460381
    [12] SHAHID UL I, BUTOLA B S, MOHAMMAD F. Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials[J]. RSC Advances,2016,6(50):44232-44247. doi: 10.1039/C6RA05799C
    [13] GULATI R, SHARMA S, SHARMA R K. Antimicrobial textile: Recent developments and functional perspective[J]. Polymer Bulletin,2022,79:5747-5771. doi: 10.1007/s00289-021-03826-3
    [14] SAVOIA D. Plant-derived antimicrobial compounds: Alternatives to antibiotics[J]. Future Microbiology,2012,7(8):979-990.
    [15] UPADHYAY A, UPADHYAYA I, KOLLANOOR-JOHNY A, et al. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis[J]. BioMed Research International,2014,2014(55):761741.
    [16] SIMONCIC B, TOMSIC B. Structures of novel antimicrobial agents for textiles—A review[J]. Textile Research Journal,2010,80(16):1721-1737. doi: 10.1177/0040517510363193
    [17] BROWN E D, WRIGHT G D. Antibacterial drug discovery in the resistance era[J]. Nature,2016,529(7586):336-343. doi: 10.1038/nature17042
    [18] SOMMER M O A, MUNCK C, TOFT-KEHLER R V, et al. Prediction of antibiotic resistance: Time for a new preclinical paradigm?[J]. Nature Reviews Microbiology,2017,15(11):688-695.
    [19] MAZINANI A, RASTIN H, NINE M J, et al. Comparative antibacterial activity of 2D materials coated on porous-titania[J]. Journal of Materials Chemistry B,2021,9(32):6412-6424. doi: 10.1039/D1TB01122G
    [20] HUANG K, LI Z J, LIN J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews,2018,47(14):5109-5124. doi: 10.1039/C7CS00838D
    [21] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [22] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [23] SOLEYMANIHA M, SHAHBAZI M A, RAFIEERAD A R, et al. Promoting role of MXene nanosheets in biomedical sciences: Therapeutic and biosensing innovations[J]. Advanced Healthcare Materials,2019,8(1):1801137. doi: 10.1002/adhm.201801137
    [24] LU B B, ZHU Z Y, MA B Y, et al. 2D MXene nanomaterials for versatile biomedical applications: Current trends and future prospects[J]. Small,2021,17(46):2100946. doi: 10.1002/smll.202100946
    [25] GEORGE S M, KANDASUBRAMANIAN B. Advancements in MXene-polymer composites for various biomedical applications[J]. Ceramics International,2020,46(7):8522-8535. doi: 10.1016/j.ceramint.2019.12.257
    [26] REN X Y, HUO M F, WANG M M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging[J]. ACS Nano,2019,13(6):6438-6454. doi: 10.1021/acsnano.8b09327
    [27] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [28] RONCHI R M, ARANTES J T, SANTOS S F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives[J]. Ceramics International,2019,45(15):18167-18188. doi: 10.1016/j.ceramint.2019.06.114
    [29] TAN Z L, WEI J X, LIU Y, et al. V2CTx MXene and its derivatives: Synthesis and recent progress in electrochemical energy storage applications[J]. Rare Metals,2022,41(3):775-797.
    [30] 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7):2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001

    ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica,2021,38(7):2078-2091(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210330.001
    [31] LIU G, GUO Y, MENG B, et al. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water[J]. Chinese Journal of Chemical Engineering,2022,41(1):260-266.
    [32] LI S, SHAO L, YANG Z, et al. Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation[J]. Green Energy & Environment,2022,7(2):246-256.
    [33] 吴梦, 饶磊, 张建峰, 等. MXene及其复合吸波材料的制备与性能研究进展[J]. 复合材料学报, 2022, 39(3):942-955.

    WU Meng, RAO Lei, ZHANG Jianfeng, et al. Research progress in preparation and performance of MXene and its composite absorbing materials[J]. Acta Materiae Compositae Sinica,2022,39(3):942-955(in Chinese).
    [34] ZENG Z, WU N, WEI J, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding[J]. Nano-Micro Letters,2022,14(1):1-16. doi: 10.1007/s40820-021-00751-y
    [35] 李俊, 徐丽慧, 王黎明, 等. 基于二维过渡金属碳化物的超疏水电磁屏蔽织物的制备及性能研究[J]. 印染, 2022, 48(5):16-20.

    LI Jun, XU Lihui, WANG Liming, et al. Preparation and performance of superhydrophobic and electromagnetic shielding fabric based on two-dimensional transition metal carbides[J]. China Dyeing & Finishing,2022,48(5):16-20(in Chinese).
    [36] YU L, HU L, ANASORI B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603. doi: 10.1021/acsenergylett.8b00718
    [37] 张亚林, 王梦倩, 陈兴刚, 等. Ti3C2TX MXenes 材料在超级电容器中的应用研究进展[J]. 复合材料学报, 2023, 40(2):678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002

    ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(2):678-687(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220412.002
    [38] TAN L, WEI C, ZHANG Y, et al. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte[J]. Journal of Energy Chemistry,2022,69(6):221-230.
    [39] CAO B, LIU H, ZHANG P, et al. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [40] 黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641. doi: 10.13801/j.cnki.fhclxb.20211123.002

    HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211123.002
    [41] 舒小兰. MXene/rGO复合膜的制备及其热声性能研究[D]. 深圳: 深圳大学, 2020.

    SHU Xiaolan. Preparation and thermoacoustic perfor-mance study of MXene/rGO composite film[D]. Shenzhen: Shenzhen University, 2020(in Chinese).
    [42] SINHA A, ZHAO H, HUANG Y, et al. MXene: An emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2018,105:424-435. doi: 10.1016/j.trac.2018.05.021
    [43] LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society,2017,139(45):16235-16247. doi: 10.1021/jacs.7b07818
    [44] 许惠凤, 董永强, 朱希, 等. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5):752-766. doi: 10.7536/PC200653

    XU Huifeng, DONG Yongqiang, ZHU Xi, et al. Novel two-dimensional MXene for biomedical applications[J]. Progress in Chemistry,2021,33(5):752-766(in Chinese). doi: 10.7536/PC200653
    [45] GUAN Q, MA J, YANG W, et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing[J]. Nanoscale,2019,11(30):14123-14133. doi: 10.1039/C9NR04421C
    [46] ABBASI F, HAJILARY N, REZAKAZEMI M. Antibacterial properties of MXene-based nanomaterials: A review[J]. Materials Express,2022,12(1):34-48. doi: 10.1166/mex.2022.2138
    [47] HUANG R, CHEN X, DONG Y, et al. MXene composite nanofibers for cell culture and tissue engineering[J]. ACS Applied Bio Materials,2020,3(4):2125-2131. doi: 10.1021/acsabm.0c00007
    [48] ZHOU L, ZHENG H, LIU Z, et al. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing[J]. ACS Nano,2021,15(2):2468-2480. doi: 10.1021/acsnano.0c06287
    [49] WU F, ZHENG H, WANG W, et al. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation[J]. Science China Materials,2021,64(3):748-758. doi: 10.1007/s40843-020-1451-7
    [50] LIN X P, LI Z J, QIU J M, et al. Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field[J]. Biomaterials Science,2021,9(16):5397-5431. doi: 10.1039/D1BM00430A
    [51] 刘超, 李茜, 郝丽芬, 等. MXene的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028. doi: 10.13801/j.cnki.fhclxb.20201218.003

    LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201218.003
    [52] DAI C, LIN H, XU G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia[J]. Chemistry of Materials,2017,29(20):8637-8652. doi: 10.1021/acs.chemmater.7b02441
    [53] DAI C, CHEN Y, JING X X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano,2017,11(12):12696-12712. doi: 10.1021/acsnano.7b07241
    [54] LIU G, ZOU J, TANG Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Applied Materials & Interfaces,2017,9(46):40077-40086. doi: 10.1021/acsami.7b13421
    [55] LIU S B, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress[J]. ACS Nano,2011,5(9):6971-6980. doi: 10.1021/nn202451x
    [56] HUI L W, HUANG J L, CHEN G X, et al. Antibacterial property of graphene quantum dots (both source material and bacterial shape matter)[J]. ACS Applied Materials & Interfaces,2016,8(1):20-25.
    [57] LIU S B, WEI L, HAO L, et al. Sharper and faster "Nano Darts" kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube[J]. ACS Nano,2009,3(12):3891-3902. doi: 10.1021/nn901252r
    [58] YANG K, MA Y Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer[J]. Nature Nanotechnology,2010,5(8):579-583. doi: 10.1038/nnano.2010.141
    [59] ZOU X F, ZHANG L, WANG Z J, et al. Mechanisms of the antimicrobial activities of graphene materials[J]. Journal of the American Chemical Society,2016,138(7):2064-2077. doi: 10.1021/jacs.5b11411
    [60] RAJAVEL K, SHEN S, KE T, et al. Achieving high bactericidal and antibiofouling activities of 2D titanium carbide (Ti3C2Tx) by delamination and intercalation[J]. 2D Materials,2019,6(3):035040. doi: 10.1088/2053-1583/ab23ce
    [61] JASTRZEBSKA A, KARWOWSKA E, BASIAK D, et al. Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM[J]. International Journal of Electrochemical Science,2017,12(3):2159-2172.
    [62] JASTRZEBSKA A M, KARWOWSKA E, WOJCIECHOWSKI T, et al. The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E-coli bacteria[J]. Journal of Materials Engineering and Performance,2019,28(3):1272-1277. doi: 10.1007/s11665-018-3223-z
    [63] RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano,2016,10(3):3674-3684. doi: 10.1021/acsnano.6b00181
    [64] TIAN T, SHI X, CHENG L, et al. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent[J]. ACS Applied Materials & Interfaces,2014,6(11):8542-8548.
    [65] SHAMSABADI A A, GH M S, ANASORI B, et al. Antimicrobial mode-of-action of colloidal Ti3C2TX MXene nanosheets[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):16586-16596.
    [66] KIM I Y, PARK S, KIM H, et al. Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film[J]. Advanced Functional Materials,2014,24(16):2288-2294. doi: 10.1002/adfm.201303040
    [67] AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736. doi: 10.1021/nn101390x
    [68] PANDEY R P, RASHEED P A, GOMEZ T, et al. Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets[J]. ACS Applied Nano Materials,2020,3(11):11372-11382. doi: 10.1021/acsanm.0c02463
    [69] LEE O S, MADJET M E, MAHMOUD K A. Antibacterial mechanism of multifunctional MXene nanosheets: Domain formation and phase transition in lipid bilayer[J]. Nano Letters,2021,21(19):8510-8517. doi: 10.1021/acs.nanolett.1c01986
    [70] TAN L Y, SIN L T, BEE S T, et al. Funtionalization and mechanical propeties of cotton fabric with ZnO nanoparticles for antibacterial textile application[J]. Solid State Phenomena,2019,290:292-297.
    [71] NASKAR A, LEE S, LEE Y, et al. A new nano-platform of erythromycin combined with Ag nano-particle ZnO nano-structure against methicillin-resistant staphylococcus aureus[J]. Pharmaceutics,2020,12(9):841. doi: 10.3390/pharmaceutics12090841
    [72] ALSOHAIMI I H, NASSAR A M, ELNASR T A S, et al. A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: A potent photocatalytic and antibacterial activities[J]. Journal of Cleaner Production,2020,248:119274. doi: 10.1016/j.jclepro.2019.119274
    [73] LIU S, WEN B, JIANG X, et al. Enhanced photocathodic antifouling/antibacterial properties of polyaniline-Ag-N-doped TiO2 coatings[J]. Journal of Materials Science,2020,55(34):16255-16272. doi: 10.1007/s10853-020-05170-9
    [74] WANG W, FENG H M, LIU J G, et al. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J]. Chemical Engineering Journal,2020,386:124116. doi: 10.1016/j.cej.2020.124116
    [75] ZHU X, ZHU Y, JIA K, et al. A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications[J]. Nanoscale,2020,12(37):19129-19141. doi: 10.1039/D0NR04925E
    [76] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A,2018,6(8):3522-3533. doi: 10.1039/C7TA10888E
    [77] LV S, SONG B, HAN F, et al. MXene-based hybrid system exhibits excellent synergistic antibiosis[J]. Nanotechnology,2021,33(8):085101.
    [78] HEGSTAD K, LANGSRUD S, LUNESTAD B T, et al. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health?[J]. Microbial Drug Resistance,2010,16(2):91-104. doi: 10.1089/mdr.2009.0120
    [79] RASOOL K, MAHMOUD K A, JOHNSON D J, et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets[J]. Scientific Reports,2017,7(1):1-11. doi: 10.1038/s41598-016-0028-x
    [80] RASOOL K, PANDEY R P, RASHEED P A, et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)[J]. Materials Today,2019,30:80-102. doi: 10.1016/j.mattod.2019.05.017
    [81] ROZMYSLOWSKA-WOJCIECHOWSKA A, MITRZAK J, SZUPLEWSKA A, et al. Engineering of 2D Ti3C2 MXene surface charge and its influence on biological properties[J]. Materials,2020,13(10):2347. doi: 10.3390/ma13102347
    [82] NIE Y, MA S Y, TIAN M Z, et al. Superhydrophobic silane-based surface coatings on metal surface with nanoparticles hybridization to enhance anticorrosion efficiency, wearing resistance and antimicrobial ability[J]. Surface & Coatings Technology,2021,410:126966.
    [83] XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie International Edition,2016,55(47):14569-14574. doi: 10.1002/anie.201606643
    [84] LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters,2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339
    [85] FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Advanced Functional Materials,2019,29(22):1901942. doi: 10.1002/adfm.201901942
    [86] WU Z, SHI J, SONG P, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery[J]. International Journal of Biological Macromolecules,2021,183:870-879. doi: 10.1016/j.ijbiomac.2021.04.164
    [87] ZHENG Y, YAN Y, LIN L, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection[J]. Acta Biomaterialia,2022,142:113-123. doi: 10.1016/j.actbio.2022.02.019
    [88] 张思雨, 赵立环, 刘斯璐, 等. 基于氧化石墨烯及其复合材料的纺织品抗菌整理研究进展[J]. 复合材料学报, 2021, 38(4):1043-1053. doi: 10.13801/j.cnki.fhclxb.20201202.002

    ZHANG Siyu, ZHAO Lihuan, LIU Silu, et al. Research progress of antibacterial finishing of textiles based on graphene oxide and its composite materials[J]. Acta Materiae Compositae Sinica,2021,38(4):1043-1053(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201202.002
    [89] 张宪胜, 施楣梧, 王莉莉, 等. 基于二维层状MXene纳米片制备电磁屏蔽织物的方法及产品: 中国, 109868646A[P]. 2019-06-11.

    ZHANG Xiansheng, SHI Meiwu, WANG Lili, et al. Method for making electromagnetic shielding fabric based on two-dimensional layered MXene nanosheets and product: China, 109868646A[P]. 2019-06-11(in Chinese).
    [90] 马亚楠, 罗时军, 张传坤, 等. 一种基于MXene柔性织物电极的制备方法及其应用: 中国, 109003836B[P]. 2020-01-07.

    MA Ya'nan, LUO Shijun, ZHANG Chuankun, et al. A method for preparing an MXene-based flexible fabric electrode and application thereof to a supercapacitor: China, 109003836B[P]. 2020-01-07(in Chinese).
    [91] 辛斌杰, 李悦, 陆赞, 等. 一种基于MXene和棉织物复合材料制备柔性超级电容器的方法: 中国, 112331488A[P]. 2021-02-05.

    XIN Binjie, LI Yue, LU Zan, et al . Preparation method of manganese dioxide/graphene composite carbided cotton fabric: China,112331488A[P]. 2021-02-05(in Chinese).
    [92] YAN B, BAO X, LIAO X, et al. Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC[J]. ACS Applied Materials & Interfaces,2022,14(1):2132-2145. doi: 10.1021/acsami.1c22740
    [93] UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials,2019,29(45):1905015. doi: 10.1002/adfm.201905015
    [94] ZHAO X, WANG L Y, TANG C Y, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications[J]. ACS Nano,2020,14(7):8793-8805. doi: 10.1021/acsnano.0c03391
    [95] 赵兵, 张露, 黄紫娟, 等. 一种MXenes-AgNPs协同的抗菌棉织物及其制备方法: 中国, 112941899A[P]. 2021-06-11.

    ZHAO Bing, ZHANG Lu, HUANG Zijuan, et al. MXenes-AgNPs synergistic antibacterial cotton fabric and preparation method thereof: China, 112941899A[P]. 2021-06-11(in Chinese).
    [96] 赵兵, 张露, 牛建涛, 等. 一种基于MXene二维纳米片的多功能真丝面料及其制备方法: 中国, 112941907A[P]. 2021-06-11.

    ZHAO Bing, ZHANG Lu, NIU Jiantao, et al. Multifunctional real silk fabric based on MXene two-dimensional nanosheets and preparation method of multifunctional real silk fabric: China, 112941907A[P]. 2021-06-11(in Chinese).
    [97] 王小英, 吴正国, 唐淑玮. 一种止血用壳聚糖/Mxene抗菌复合海绵及其制备方法: 中国, 112516374A[P]. 2021-03-19.

    WANG Xiaoying, WU Zhengguo, TANG Shuwei. Chitosan/Mxene antibacterial composite sponge for hemostasis and preparation method thereof: China, 112516374A[P]. 2021-03-19(in Chinese).
    [98] 马贵平, 董慧丰, 陈炎, 等. 一种抗菌止血敷料: 中国, 112546286A[P]. 2021-03-26.

    MA Guiping, DONG Huifeng, CHEN Yan, et al. Antibacterial hemostasis dressing: China, 112546286A[P]. 2021-03-26(in Chinese).
    [99] MAYERBERGER E A, STREET R M, MCDANIEL R M, et al. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers[J]. RSC Advances,2018,8(62):35386-35394. doi: 10.1039/C8RA06274A
    [100] 曹美文, 丁榛, 张宇欣, 等. 一种海藻酸钠抗菌敷料的制备方法: 中国, 111440349A[P]. 2020-07-24.

    CAO Meiwen, DING Zhen, ZHANG Yuxin, et al. Preparation method of sodium alginate antibacterial dressing: China, 111440349A[P]. 2020-07-24(in Chinese).
    [101] ZOU Y, JIN X, ZHANG X, et al. A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene[J]. Science China Technological Sciences,2021,64(12):2744-2754. doi: 10.1007/s11431-021-1843-3
    [102] MAO L, HU S, GAO Y, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced Healthcare Materials,2020,9(19):2000872. doi: 10.1002/adhm.202000872
    [103] ZHANG T, GU J, LIU X, et al. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine[J]. Materials Science and Engineering: C,2020,111:110855. doi: 10.1016/j.msec.2020.110855
    [104] ZHANG S, YE J, SUN Y, et al. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing[J]. Chemical Engineering Journal,2020,390:124523. doi: 10.1016/j.cej.2020.124523
    [105] AADIL K R, MUSSATTO S I, JHA H. Synthesis and characterization of silver nanoparticles loaded poly(vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity[J]. International Journal of Biological Macromolecules,2018,120:763-767. doi: 10.1016/j.ijbiomac.2018.08.109
    [106] XU X, WANG S, WU H, et al. A multimodal antimicrobial platform based on MXene for treatment of wound infection[J]. Colloids and Surfaces B: Biointerfaces,2021,207:111979. doi: 10.1016/j.colsurfb.2021.111979
    [107] CHATTERJEE A K, SARKAR R K, CHATTOPADHYAY A P, et al. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli[J]. Nanotechnology,2012,23(8):085103. doi: 10.1088/0957-4484/23/8/085103
    [108] CHEN S, GUO Y, ZHONG H, et al. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles[J]. Chemical Engineering Journal,2014,256:238-246. doi: 10.1016/j.cej.2014.07.006
  • 加载中
图(14)
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  762
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-08
  • 录用日期:  2022-06-17
  • 网络出版日期:  2022-06-28
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回