留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超润滑表面液滴在温度及力场作用下的钉扎/滑动行为及内在机制

顾剑锋 黄玖辉 李大宇 刘霖 朱苏皖 肖轶

顾剑锋, 黄玖辉, 李大宇, 等. 超润滑表面液滴在温度及力场作用下的钉扎/滑动行为及内在机制[J]. 复合材料学报, 2023, 40(4): 2209-2215. doi: 10.13801/j.cnki.fhclxb.20220701.001
引用本文: 顾剑锋, 黄玖辉, 李大宇, 等. 超润滑表面液滴在温度及力场作用下的钉扎/滑动行为及内在机制[J]. 复合材料学报, 2023, 40(4): 2209-2215. doi: 10.13801/j.cnki.fhclxb.20220701.001
GU Jianfeng, HUANG Jiuhui, LI Dayu, et al. Pinning/sliding behaviors and underlying mechanism of water droplets on ultra-slippery surfaces under temperature and force fields stimuli[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2209-2215. doi: 10.13801/j.cnki.fhclxb.20220701.001
Citation: GU Jianfeng, HUANG Jiuhui, LI Dayu, et al. Pinning/sliding behaviors and underlying mechanism of water droplets on ultra-slippery surfaces under temperature and force fields stimuli[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2209-2215. doi: 10.13801/j.cnki.fhclxb.20220701.001

超润滑表面液滴在温度及力场作用下的钉扎/滑动行为及内在机制

doi: 10.13801/j.cnki.fhclxb.20220701.001
基金项目: 中央高校基本科研基金(WK2090000035;WK2480000005);江苏省高校“青蓝工程”项目(2019);江苏省高校自然科学基金面上项目(18KJB430022);江苏省自然科学基金面上项目(BK20191209);江苏省优秀科技创新团队项目(2021-52)
详细信息
    通讯作者:

    朱苏皖,博士,副研究员,研究方向为超快激光仿生表/界面加工及微流体输运动力学 E-mail: suwanzhu@ustc.edu.cn

    肖轶,博士,教授,博士生导师,研究方向为超快激光仿生表/界面加工及微流体输运动力学 Email: xiaoyiphd@163.com

  • 中图分类号: O59

Pinning/sliding behaviors and underlying mechanism of water droplets on ultra-slippery surfaces under temperature and force fields stimuli

Funds: Fundamental Research Funds for Central Universities (WK2090000035; WK2480000005); Qing Lan Project of the Jiangsu Province Higher Education Institutions of China (2019); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB430022); Natural Science Foundation of Jiangsu Province (BK20191209); Excellent Scientific and Technological Innovation Team Project of Jiangsu Province (2021-52)
  • 摘要: 近年来,刺激响应型液体注入式超润滑多孔表面(SLIPS)在微流体操控领域受到广泛关注。然而,大多数报道的刺激响应型SLIPS都是在室温或相对高温下实现液滴操控,难以满足更广泛的应用场景。本文利用飞秒激光正交扫描方法制备了一种双重响应超润滑表面(DRSS)。通过温度场和力场的共同作用,实现了微液滴在DRSS上滑动/钉扎行为的动态控制。系统研究了润滑油注入量、沟槽深度和间距等实验参数对液滴临界滑动体积的影响规律,揭示了液滴钉扎/滑动动力学机制。这种双物理场调控下的超润滑表面液滴操控方法有望用于芯片实验室、微流体反应器等相关领域。

     

  • 图  1  双重响应超润滑表面 (DRSS)制备原理(a)及液滴操控行为(b)

    PDMS—Polydimethylsiloxane

    Figure  1.  Schematic fabrication of dual-responsive slippery surface (DRSS) (a) and its droplet control behaviors (b)

    图  2  不同放大倍数下DRSS表面的微沟槽结构扫描电镜图像

    Figure  2.  SEM images of the microgroove structures on the DRSS at different magnification

    图  3  (a)室温和低温之间DRSS表面的液滴临界滑动体积;润滑油注入量(b)、沟槽深度(c)和间距(d)等不同实验参数下DRSS表面液滴滑动/钉住行为的临界滑动体积

    Figure  3.  (a) Comparison of critical sliding volume between room temperature (25℃) and low temperature (−20.5℃); Critical sliding volume for sliding/pinning behavior of droplet on stretchable DRSS in diverse experimental parameters including lubricant infusion amount (b), microgroove depth (c) and spacing (d)

    ε—Stretching multiple

    图  4  室温(a)和低温(b)下DRSS表面液滴滑动和固定行为示意图及受力分析

    Figure  4.  Schematics and force analysis of droplet sliding and pinning behaviors on the DRSS at room temperature (25℃) (a) and low temperature (−20.5℃) (b)

    α—Tilt angle of DRSS; θb—Receding angle; θa—Advancing angle; R—Droplet base radius; m—Droplet mass; g—Gravity acceleration; G—Gravity of droplet; Ff—Friction force; Fs—Support force; Fdriven—Driving force; H—Meniscus height; h—Oil film thickness; Ff*—Friction force

  • [1] UEDA E, GEYER F L, NEDASHKIVSKA V, et al. Droplet microarray: Facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications[J]. Lab on a Chip,2012,12(24):5218-5224. doi: 10.1039/c2lc40921f
    [2] POPOVA A A, DEMIR K, HARTANTO T G, et al. Droplet-microarray on superhydrophobic-superhydrophilic patterns for high-throughput live cell screenings[J]. RSC Advances,2016,6(44):38263-38276. doi: 10.1039/C6RA06011K
    [3] MINEMAWARI H, YAMADA T, MATSUI H, et al. Inkjet printing of single-crystal films[J]. Nature,2011,475:364-367. doi: 10.1038/nature10313
    [4] XU L P, CHEN Y, YANG G, et al. Ultratrace DNA detection based on the condensing-enrichment effect of superwettable microchips[J]. Advanced Materials,2015,27(43):6878-6884. doi: 10.1002/adma.201502982
    [5] JOKINEN V, SAINIEMI L, FRANSSILA S. Complex droplets on chemically modified silicon nanograss[J]. Advanced Materials,2008,20(18):3453-3456. doi: 10.1002/adma.200800160
    [6] WU D, WU S Z, CHEN Q D, et al. Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation[J]. Advanced Materials,2011,23(4):545-549. doi: 10.1002/adma.201001688
    [7] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477:443-447. doi: 10.1038/nature10447
    [8] GUO T Q, CHE P D, HENG L P, et al. Anisotropic slippery surfaces: Electric-driven smart control of a drop's slide[J]. Advanced Materials,2016,28(32):6999-7007. doi: 10.1002/adma.201601239
    [9] WANG Y, ZHANG H F, LIU X W, et al. Slippery liquid-infused substrates: A versatile preparation, unique anti-wetting and drag-reduction effect on water[J]. Journal of Materials Chemistry A,2016,4(7):2524-2529. doi: 10.1039/C5TA09936F
    [10] SUNNY S, VOGEL N, HOWELL C, et al. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition[J]. Advanced Functional Materials,2014,24(42):6658-6667. doi: 10.1002/adfm.201401289
    [11] JUUTI P, HAAPANEN J, STENROOS C, et al. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate[J]. Applied Physics Letters,2017,110:161603. doi: 10.1063/1.4981905
    [12] LV X D, JIAO Y L, WU S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces,2019,11(12):20574-20580. doi: 10.1021/acsami.9b06849
    [13] LI P, CAO M Y, BAI H Y, et al. Unidirectional liquid manipulation via an integrated mesh with orthogonal anisotropic slippery tracks[J]. Advanced Functional Materials,2019,29(42):1904446. doi: 10.1002/adfm.201904446
    [14] SU X J, LI H Q, LAI X J, et al. Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation[J]. ACS Applied Materials & Interfaces,2018,10(4):4213-4221. doi: 10.1021/acsami.7b15909
    [15] TANG X, WANG L Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces[J]. ACS Nano,2018,12(9):8994-9004. doi: 10.1021/acsnano.8b02470
    [16] LOURENCO B N, MARCHIOLI G, SONG W L, et al. Wettability influences cell behavior on superhydrophobic surfaces with different topographies[J]. Biointerphases,2012,7:46. doi: 10.1007/s13758-012-0046-6
    [17] WANG L, WANG H W, YUAN L, et al. Step-wise control of protein adsorption and bacterial attachment on a nanowire array surface: Tuning surface wettability by salt concentration[J]. Journal of Materials Chemistry,2011,21(36):13920-13925. doi: 10.1039/c1jm12148k
    [18] ZHANG Y Y, JIAO Y L, CHEN C, et al. Reversible tuning between isotropic and anisotropic sliding by one-direction mechanical stretching on microgrooved slippery surfaces[J]. Langmuir,2019,35(32):10625-10630. doi: 10.1021/acs.langmuir.9b01035
    [19] CHEN C, HUANG Z C, JIAO Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano,2019,13(5):5742-5752. doi: 10.1021/acsnano.9b01180
    [20] YU C M, ZHU X B, LI K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials,2017,27(29):1701605. doi: 10.1002/adfm.201701605
    [21] CUI W J, PAKKANEN T A. Fabrication of transparent icephobic surfaces with self-reparability: Effect of structuring and thickness of the lubricant-elastomer layer[J]. Applied Surface Science,2020,504:144061. doi: 10.1016/j.apsusc.2019.144061
    [22] SMITH J D, DHIMAN R, ANAND S, et al. Droplet mobility on lubricant-impregnated surfaces[J]. Soft Matter,2013,9(6):1772-1780. doi: 10.1039/C2SM27032C
    [23] KEISER A, KEISER L, CLANET C, et al. Drop friction on liquid-infused materials[J]. Soft Matter,2017,13(39):6981-6987. doi: 10.1039/C7SM01226H
    [24] SHARMA M, ROY P K, BARMAN J, et al. Mobility of aqueous and binary mixture drops on lubricating fluid-coated slippery surfaces[J]. Langmuir,2019,35(24):7672-7679. doi: 10.1021/acs.langmuir.9b00483
    [25] GAO N, GEYER F, PILAT D W, et al. How drops start sliding over solid surfaces[J]. Nature Physics,2018,14(2):191-196. doi: 10.1038/nphys4305
    [26] DANIEL D, TIMONEN J V I, LI R P, et al. Oleoplaning droplets on lubricated surfaces[J]. Nature Physics,2017,13(10):1020-1025. doi: 10.1038/nphys4177
  • 加载中
图(4)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  398
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-06-23
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回