基于细观力学和机器学习的纤维增强复合材料热-力多物理性能预测

Thermo-mechanical multiphysical properties prediction of fiber-reinforced composites based on micromechanics and machine learning

  • 摘要: 单向纤维增强复合材料的各物理性能与其组分材料性能和纤维的分布有着不同程度的关联。为此,本文基于卷积神经网络(CNN)与人工神经网络(ANN)进行建立了能同时考虑图像数据和文本数据的CNN-ANN模型。首先采用贪婪自适应(GBG)算法生成的代表性体积单元(RVEs),进而基于细观力学有限元分析构建了共1400个包含不同纤维分布的图像数据及其纤维最近邻信息文本数据的输入数据集。所提出的CNN-ANN融合模型对单向亚麻纤维树脂基增强复合材料(FFRPCs)各方向导热系数的拟合度R²均超过了 \text99\% 。对横向拉伸模量、横向拉伸强度以及起始失效应变的拟合度R²分别达到了 \text99\text.7\text% 、 \text94.9\% 和 \text87.1\% 。相较于基于单一文本数据集的ANN模型,CNN-ANN融合模型具有较高的预测精度。本文的研究结果验证了基于图像数据和文本数据的CNN-ANN融合模型的可行性和优越性。为今后机器学习方法在复合材料多物理性能预测方面的应用和研究提供有益参考。

     

    Abstract: The various physical properties of unidirectional fiber-reinforced composites are associated to differing extents with the performance of their constituent materials and the distribution of the fibers. To this end, this study establishes a CNN-ANN model that simultaneously considers both image data and text data, leveraging Convolutional Neural Networks (CNN) and Artificial Neural Networks (ANN). Representative Volume Elements (RVEs) were generated using a Greedy-based Generation (GBG) algorithm, and subsequently, a dataset comprising 1400 images representing different fiber distributions, along with their associated fiber nearest neighbor text data, was constructed through mesoscale finite element analysis. The fitting degree R² of the proposed CNN-ANN fusion model to the thermal conductivity of unidirectional flax fiber reinforced polymer composites (FFRPCs) exceeds \text99\% . The fit for the transverse tensile modulus, transverse tensile strength, and initial failure strain reaches R² values of \text99.7\% , \text94.9\% , and \text87.1\% , respectively. Compared to the ANN model based solely on text data, the CNN-ANN fusion model demonstrates significantly higher predictive accuracy. The findings of this study validate the feasibility and superiority of the CNN-ANN fusion model that integrates image and text data, providing valuable reference for the future application and research of machine learning methods in the prediction of the multiphysical properties of composite materials.

     

/

返回文章
返回