留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹纤维增强大豆油基类玻璃高分子复合材料的制备与性能

李超 张沥元 曾雍 陈义桢 邱仁辉 刘文地

李超, 张沥元, 曾雍, 等. 竹纤维增强大豆油基类玻璃高分子复合材料的制备与性能[J]. 复合材料学报, 2023, 40(5): 3018-3025. doi: 10.13801/j.cnki.fhclxb.20220804.006
引用本文: 李超, 张沥元, 曾雍, 等. 竹纤维增强大豆油基类玻璃高分子复合材料的制备与性能[J]. 复合材料学报, 2023, 40(5): 3018-3025. doi: 10.13801/j.cnki.fhclxb.20220804.006
LI Chao, ZHANG Liyuan, ZENG Yong, et al. Preparation and properties of bamboo fibers reinforced soybean oil-based vitrimer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3018-3025. doi: 10.13801/j.cnki.fhclxb.20220804.006
Citation: LI Chao, ZHANG Liyuan, ZENG Yong, et al. Preparation and properties of bamboo fibers reinforced soybean oil-based vitrimer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3018-3025. doi: 10.13801/j.cnki.fhclxb.20220804.006

竹纤维增强大豆油基类玻璃高分子复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220804.006
基金项目: 国家自然科学基金(32171697);福建省林业局重点科技攻关项目(2021FKJ02);福建农林大学杰出青年科研人才计划项目(Kxjq20013)National Natural Science Foundation of China (32171697); Key Scientific and Technological Projects from Fujian Provincial Administration of Forestry (2021FKJ02); Outstanding Young Scientific Research Program from Fujian Agriculture and Forestry University (Kxjq20013)
详细信息
    通讯作者:

    邱仁辉,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: renhuiqiu@fafu.edu.cn;

    刘文地,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: wendi.liu@fafu.edu.cn

  • 中图分类号: TB332

Preparation and properties of bamboo fibers reinforced soybean oil-based vitrimer composites

  • 摘要: 热固性复合材料拥有优异的力学性能、耐热性和耐化学性,但存在原料不可再生、使用后无法回收、纤维与树脂不易降解等问题。本文分别以微米级竹粉(BP)和厘米级竹纤维(BF)为增强体,以含动态硼酸酯的二硫醇固化环氧大豆油(ESOBV)为树脂基体,采用模压成型技术制备可循环回收的竹纤维增强大豆油基类玻璃高分子复合材料,同时表征了生物质复合材料的拉伸性能、动态力学性能、松弛行为、界面结合、可重塑回收性及可降解性。结果表明:纤维形态显著影响复合材料的力学性能,复合材料的拉伸强度和拉伸模量随着BP含量的增加而降低,但随着BF含量的增加而增加;因ESOBV基体中动态键的存在,复合材料高温下具有明显的应力松弛现象,其松弛时间随BP或BF含量的增加而增加;BP增强复合材料可在高温下进行回收重塑,重塑后复合材料的拉伸强度、拉伸模量和断裂伸长率分别达到原始材料的91.0%、96.3%和110.7%;在100°C、常压下,ESOBV基体中的硼酸酯基可与甘油分子发生交换反应,因此基体经甘油降解后可回收BF,且回收的纤维形态不受损坏。

     

  • 图  1  (a) 微米级竹粉(BP)/环氧大豆油(ESO)和厘米级竹纤维(BF)/ESO复合材料的制备;(b) ESOBV网络通过硼酸酯交换反应进行拓扑重排

    DMAP—4-dimethylaminopyridine; ESOBV—Soybean oil-based vitrimer; BDB—2, 2′-(1, 4-phenylene)-bis[4-mercaptan-1, 3, 2-dioxaborolane]

    Figure  1.  (a) Preparation of micrometer-scale bamboo powders (BP)/epoxidized soybean oil (ESO) and centimeter-scale bamboo fibers (BF)/ESO composites; (b) Network topology rearrangement of ESOBV resins via borate ester exchange reaction

    图  2  BP/ESO ((a), (b))和BF/ESO ((c), (d)) 复合材料的拉伸性能

    Significant differences exist between any two groups when they do not share a common letter over the columns

    Figure  2.  Tensile properties of BP/ESO ((a), (b)) and BF/ESO ((c), (d)) composites

    图  3  BP/ESO (a)和BF/ESO (b)复合材料的DMA曲线

    tanδ—Loss factor

    Figure  3.  DMA curves of BP/ESO (a) and BF/ESO (b) composites

    图  4  BP/ESO (a)和BF/ESO (b)复合材料在120℃的应力松弛曲线

    G—Relaxation modulus; G0—Initial relaxation modulus; e—Exponential

    Figure  4.  Stress relaxation curves of BP/ESO (a) and BF/ESO (b) composites at 120℃

    图  5  (a)复合材料BF/ESO的降解过程;(b)原纤维和回收纤维的SEM图像;(c) ESOBV基体在甘油中的降解机制示意图

    Figure  5.  (a) Degradation process of BF/ESO composites; (b) SEM images of original fibers and recycled fibers; (c) Schematic decomposition mechanism of ESOBV resins in glycerol

    图  6  BP/ESO复合材料的重塑过程

    Figure  6.  Recycled process of BP/ESO composites

    图  7  二次回收BP/ESO-30复合材料的拉伸性能

    Figure  7.  Tensile properties of recycled BP/ESO-30 composites for twice

    图  8  复合材料BP/ESO-40 (a)和BF/ESO-40 (b)的拉伸断裂面SEM图像

    Figure  8.  SEM images of tensile-fractured surface of BP/ESO-40 (a) and BF/ESO-40 (b) composites

    表  1  ESOBV基复合材料的配方

    Table  1.   ESOBV-based composite formulations

    SampleMass fraction/%
    BPBFESOBVDMAP
    ESOBV 0 0 100 2
    BP/ESO-30 30 0 70
    BP/ESO-40 40 0 60
    BP/ESO-50 50 0 50
    BF/ESO-30 0 30 70
    BF/ESO-40 0 40 60
    BF/ESO-50 0 50 50
    下载: 导出CSV
  • [1] MAHMUD S, HASAN K, JAHID M A, et al. Comprehensive review on plant fiber-reinforced polymeric biocomposites[J]. Journal of Materials Science,2021,56(12):7231-7264. doi: 10.1007/s10853-021-05774-9
    [2] BOURMAUD A, BEAUGRAND J, SHAH D, et al. Towards the design of high-performance plant fibre composites[J]. Progress in Materials Science,2018,97:347-408. doi: 10.1016/j.pmatsci.2018.05.005
    [3] MUHAMMAD A, RAHMAN M, HAMDAN S, et al. Recent developments in bamboo fiber-based composites: A review[J]. Polymer Bulletin,2019,76:2655-2682. doi: 10.1007/s00289-018-2493-9
    [4] 代金月. 基于丁香酚的生物基热固性树脂合成及其性能研究[D]. 北京: 中国科学院大学, 2018.

    DAI Jinyue. Synthesis and properties of bio-based thermosetting resin based on eugenol[D]. Beijing: Chinese Academy of Sciences University, 2018(in Chinese).
    [5] AAONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science,2011,334(6058):965-968. doi: 10.1126/science.1212648
    [6] LIU X, LIANG L, LU M, et al. Water-resistant bio-based vitrimers based on dynamic imine bonds: Self-healability, remodelability and ecofriendly recyclability[J]. Polymer,2020,210(25):123030.
    [7] SHAUKAT U, ROSSEGGER E, SCHLGL S. Thiol-acrylate based vitrimers: From their structure-property relationship to the additive manufacturing of self-healable soft active devices[J]. Polymer,2021,231:124110. doi: 10.1016/j.polymer.2021.124110
    [8] MORENO A, MOHAMMAD M, SIPPONEN M H, et al. Catalyst-free synthesis of lignin vitrimers with tunable mechanical properties: Circular polymers and recoverable adhesives[J]. ACS Applied Materials and Interfaces,2021,13(48):57952-57961. doi: 10.1021/acsami.1c17412
    [9] TAJBAKHSH S, HAJIALI F, MARI M. Recyclable polymers with boronic ester dynamic bonds prepared by miniemulsion polymerization[J]. ACS Applied Polymer Materials,2021,3(7):3402-3415. doi: 10.1021/acsapm.1c00368
    [10] ZHAO S, YANG H, DONG G, et al. Fully biobased elastomer composites with mechanically robust, reprocessable, and biocompatible properties[J]. ACS Applied Polymer Materials,2021,3(12):6446-6454. doi: 10.1021/acsapm.1c01179
    [11] LORWANISHPAISARN N, KASEMSIRI P, SRIKHAO N, et al. Carbon fiber/epoxy vitrimer composite patch cured with bio-based curing agents for one-step repair metallic sheet and its recyclability[J]. Journal of Applied Polymer Science,2021,138(47):51406. doi: 10.1002/app.51406
    [12] LIU X, ZHANG E, FENG Z, et al. Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites[J]. Journal of Material Science,2021,56(3):1-19.
    [13] JI B, LIU X, SHENG D, et al. Epoxy-vitrimer composites based on exchangeable aromatic disulfide bonds: Reprocessibility, adhesive, multi-shape memory effect[J]. Polymer,2020,197(5):122514.
    [14] LIU Y, LIU J, LI Y, et al. Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites[J]. ACS Sustainable Chemistry and Engineering,2021,9(12):4638-4647. doi: 10.1021/acssuschemeng.1c00231
    [15] ZHANG J, LEI Z, LUO S, et al. Malleable and recyclable conductive MWCNTs-vitrimer composite for flexible electro-nics[J]. ACS Applied Nano Materials,2020,3(5):4845-4850. doi: 10.1021/acsanm.0c00902
    [16] CHABERT E, VIAL J, CAUCHOIS J, et al. Multiple welding of long fiber epoxy vitrimer composites[J]. Soft Matter,2016,12:4838. doi: 10.1039/C6SM00257A
    [17] MARKWART J, BATTIG A, URBANIAK T, et al. Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials[J]. Polymer Chemistry,2020,11:4933-4941. doi: 10.1039/D0PY00275E
    [18] 王成双. 大豆油基聚氨酯的改性及其纳米复合材料的制备与表征[D]. 南京: 南京大学, 2012.

    WANG Chengshuang. Modification of soybean oil-based polyurethane and preparation and characterization of nanocomposites[D]. Nanjing: Nanjing University, 2012(in Chinese).
    [19] 朱金. 环氧大豆油基聚合物的合成及性能研究[D]. 南京: 南京林业大学, 2014.

    ZHU Jin. Synthesis and properties of epoxidized soybean oil-based polymers[D]. Nanjing: Nanjing Forestry University, 2014(in Chinese).
    [20] ALTUNA F, PETTARIN V, WILLIAMS R. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution[J]. Green Chemistry,2013,15(12):3360-3366. doi: 10.1039/c3gc41384e
    [21] WU J, YU X, ZHANG H, et al. Fully biobased vitrimers from glycyrrhizic acid and soybean oil for self-healing, shape memory, weldable, and recyclable materials[J]. ACS Sustainable Chemistry and Engineering,2020,8(16):6479-6487. doi: 10.1021/acssuschemeng.0c01047
    [22] LIU Y, HE J, LI Y, et al. Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil[J]. Industrial Crops and Products,2020,153:112576. doi: 10.1016/j.indcrop.2020.112576
    [23] LIU Y, HE J, LI Y, et al. Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite[J]. Composites Communications,2020,22:100445. doi: 10.1016/j.coco.2020.100445
    [24] LI C, CHEN Y, ZENG Y, et al. Strong and recyclable soybean oil-based epoxy adhesives based on dynamic borate[J]. European Polymer Journal,2022,162:110923. doi: 10.1016/j.eurpolymj.2021.110923
    [25] International Organization for Standardization. Plastics—Determination of tensile properties—Part 1: General principles: ISO 527-1[S]. Geneva: International Organization for Standardization, 2019.
    [26] ASTM. Standard test method for plastics: Dynamic mechanical properties: In flexure (Three-point bending): ASTM D 5023-07[S].West Conshohocken: American Society of Testing Materials, 2007.
    [27] 郝建淦, 贾润礼, 闫赫. 竹粉用量对呋喃树脂基木塑复合材料性能的影响[J]. 塑料科技, 2012, 40(9):64-67. doi: 10.15925/j.cnki.issn1005-3360.2012.09.017

    HAO Jiangan, JIA Runli, YAN He. Effect of content of bamboo powder on properties of furan resin-based wood-plastic composites[J]. Plastic Technology,2012,40(9):64-67(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2012.09.017
    [28] 乔建政, 纪雨辛, 王琦, 等. 聚己内酯/聚乳酸/竹纤维复合材料制备及性能[J]. 中国塑料, 2016, 30(11):25-31. doi: 10.19491/j.issn.1001-9278.2016.11.005

    QIAO Jianzheng, JI Yuxin, WANG Qi, et al. Preparation and properties of polycaprolactone/poly(1 actic acid)/bamboo fiber composites[J]. China Plastics,2016,30(11):25-31(in Chinese). doi: 10.19491/j.issn.1001-9278.2016.11.005
    [29] 刘美均, 王小萍, 贾德民. 竹纤维增强P34 HB复合材料的研究[J]. 广东橡胶, 2015, 1:3-8.

    LIU Meijun, WANG Xiaoping, JIA Demin. The influence of bamboo fibers on P34 HB biomaterials[J]. Guangdong Rubber,2015,1:3-8(in Chinese).
    [30] 吴宇超. 植物纤维增强棕榈油基树脂复合材料的制备与性能[D]. 福州: 福建农林大学, 2021.

    WU Yuchao. Preparation and properties of plant fiber reinforced palm oil-based resin composites[D]. Fuzhou: Fujian Agriculture and Forestry University, 2021(in Chinese).
    [31] CHO S, HWANG S, OH D, et al. Recent progress in self-healing polymers and hydrogels based on reversible dynamic B—O bonds: Boronic/boronate esters, borax, and benzoxaborole[J]. Journal of Materials Chemistry A,2021,9:14630. doi: 10.1039/D1TA02308J
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  327
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-06-22
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回