留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续碳纤维增强高性能热塑性复合材料的研究进展

肇研 孙铭辰 张思益 王凯

肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008
引用本文: 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008
ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008
Citation: ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008

连续碳纤维增强高性能热塑性复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20220809.008
详细信息
    通讯作者:

    肇研,博士,教授,博士生导师,研究方向为先进树脂基复合材料 E-mail: jennyzhaoyan@buaa.edu.cn

  • 中图分类号: TB332

Advance in continuous carbon fiber reinforced high performance thermoplastic composites

  • 摘要: 连续碳纤维增强高性能热塑性复合材料具有力学性能优异、低吸湿、耐化学药品及成型周期短、可二次成型等特点,在航空、航天等高技术领域的应用日益广泛。本文重点介绍了连续碳纤维增强高性能热塑性复合材料研究中的界面问题、预浸料制备技术和复合材料成型加工技术等方面的研究进展,期望为该类复合材料在国内的应用研究提供参考。

     

  • 图  1  聚醚酰亚胺(PEI)上浆改性碳纤维(CF)/PEI复合材料的示意图[7]:(a) PEI上浆剂的静置稳定性结果;(b) PEI上浆CF的SEM图像;(c) PEI上浆CF的AFM图像

    Figure  1.  Schematic diagram of polyether imide (PEI) sizing modified carbon fiber (CF)/PEI composite[7]: (a) Suspension stability of PEI sizing; (b) SEM image of CF surfaces after PEI sizing; (c) AFM image of CF surfaces after PEI sizing

    图  2  PEI上浆改性CF/聚醚醚酮(PEEK)的结合机制[10]

    Figure  2.  Bonding mechanism of PEI sizing modified CF/polyether ether ketone (PEEK)[10]

    图  3  PEI+氧化石墨烯(GO)改性CF示意图[11]:(a) 宏观CF/PEEK复合材料失效前后粘结机制示意图;(b) PEI+GO10施胶后CF表面的SEM和AFM图像;(c) 经PEI+GO10处理的CF/PEEK复合材料断裂后弯曲试验SEM图像;(d) 干燥状态下和湿热处理后界面剪切强度(IFSS)试验结果的比较

    Figure  3.  Schematic diagram of PEI+graphene oxide (GO) modified CF[11]: (a) Schematic illustration of bonding mechanism in macro CF/PEEK composites before and after failure; (b) SEM and AFM images of CF surfaces after PEI+GO10 sizing; (c) SEM image of fracture morphology of CF/PEEK composites with PEI+GO10 treatments after flexural test; (d) Comparison of interfacial shear strength (IFSS) results tested in dry state and after hygrothermal treatments

    PEI+GO0-PEI+GO15—PEI sizing agent with GO content of 0wt%, 1wt%, 2.5wt%, 5wt%, 7.5wt%, 10wt% and 15wt%

    图  4  PEI、ZIF-67改性CF的示意图[12] :(a) CF-PEI&ZIF制备过程示意图;(b) PEI浓度为0.010 g·mL-1时CF-PEI&ZIF的SEM图像;(c) PEI及PEI&ZIF改性后CF/PEEK复合材料的微观IFSS结果;(d) CF-PEI和ZIF/PEEK复合材料的界面区域示意图

    Figure  4.  Schematic diagrams of PEI, ZIF-67 modified CF[12]: (a) Schematic illustration for the formation process of CF-PEI&ZIF; (b) SEM image of CF-PEI&ZIF at PEI concentration of 0.010 g·mL−1; (c) Micro IFSS results of PEI or PEI&ZIF modified CF/PEEK composites; (d) Schematic representation of the interphase region of CF-PEI and ZIF/PEEK composites

    图  5  表面活性剂对PEEK分散体稳定的示意图[18]:(a) 表面活性剂对PEEK分散体稳定的机制示意图;(b) Triton X-100及聚乙二醇(PEG)分散的PEEK预浸料的金相图像;(c) Triton X-100及PEG分散的PEEK预浸料SEM图像;(d) 不同分散体系制备复合材料层间剪切强度(ILSS)值对比;(e) 不同分散体系制备复合材料弯曲性能对比

    Figure  5.  Schematic of PEEK dispersion with surfactants[18]: (a) Schematic of the stabilization mechanism of PEEK dispersion with surfactants; (b) Metallographic photo of composites prepared by Triton X-100 and polyethylene glycol (PEG) dispersed PEEK; (c) SEM image of composites Triton X-100 and PEG dispersed PEEK; (d) Interlaminar shear strength (ILSS) of composites prepared by different suspension systems; (e) Flexural properties of composites prepared by different suspension systems

    图  6  热冲压工艺流程图[24]

    Figure  6.  Flowchart of the hot stamping process[24]

    图  7  一步热冲压工艺路线图[24]

    Figure  7.  One-step hot stamping forming process route[24]

    图  8  电阻焊接冷却速率研究的示意图[30]:((a), (b)) 实验室制造的电阻焊机的示意图和图像;(c) 单根细丝聚合物复合材料PEEK结晶演化的两组POM图像:((1)~(3)) 在20℃/min的冷却速度下;((4)~(6)) 在99 ℃/min的冷却速度下;(d) 电阻焊过程的测量温度-时间曲线;(e) 所有试样的搭接剪切强度;(f) 通过DSC测量所有试样的结晶度

    Figure  8.  Schematic diagram of resistance welding cooling rate study[30]: ((a), (b)) Schematic diagram and the image of the lab-made resistance welder; (c) Two series of POM images of PEEK crystallization evolution of single thin wire polymer composites: ((1)-(3)) At the cooling rate of 20℃/min; ((4)-(6)) At the cooling rate of 99℃/min; (d) Measured temperature-time curves of the resistance welding processes; (e) Lap shear strength of all the specimens; (f) Degrees of crystallinity measured by DSC of all the specimens

    图  9  未处理钢网(SSM)的CF/PEEK接头和硅烷接枝钢网(SSM-SiG)的CF/PEEK接头界面粘结机制示意图[31]

    Figure  9.  Schematic illustration of interfacial bonding mechanism of CF/PEEK joints with untreated stainless steel mesh (SSM) and CF/PEEK joints with silane grafting stainless steel mesh (SSM-SiG)[31]

    图  10  Electroimpact公司的自动铺放设备[41]

    Figure  10.  Automatic placement equipment made by Electroimpact[41]

  • [1] 常保宁. 碳纤维增强高性能热塑性复合材料本构模型与增材制造工艺研究[D]. 大连: 大连理工大学, 2020.

    CHANG B N. Constitutive model and additive manufacturing of carbon fiber reinforced high performance thermoplastic composites[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [2] 张涵其. CF/PEEK热塑性复合材料热成型及热变形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZHANG Hanqi. Study on thermal forming andthermal deformation of CF/PEEK thermoplastic composites[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [3] LIU D, ZHU Y, DING J, et al. Experimental investigation of carbon fiber reinforced poly(phenylene sulfide) compo-sites prepared using a double-belt press[J]. Composites Part B: Engineering,2015,77:363-370.
    [4] 邢开, 徐海兵, 颜春, 等. 碳纤维增强高性能热塑性复合材料界面改性的研究进展[J]. 复合材料科学与工程, 2019(5):110-115. doi: 10.3969/j.issn.1003-0999.2019.05.019

    XING Kai, XU Haibing, YAN Chun, et al. Research progress in interface modification of carbon fiber reinforced high performance thermoplastic composites[J]. Composites Science and Engineering,2019(5):110-115(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.05.019
    [5] ZHENG H, ZHANG W J, LI B W, et al. Recent advances of interphases in carbon fiber-reinforced polymer compo-sites: A review[J]. Composites Part B: Engineering,2022,233:109639.
    [6] 战奕凯, 赵潜, 杜帅, 等. 东丽碳纤维不同去浆处理条件下的性能分析[J]. 贵州大学学报(自然科学版), 2019, 36(6):32-36.

    ZHAN Yikai, ZHAO Qian, DU Shuai, et al. Performance analysis of Toray carbon fiber under different desizing conditions[J]. Journal of Guizhou University (Natural Science),2019,36(6):32-36(in Chinese).
    [7] CHEN F, LIU X F, LIU H S, et al. Improved interfacial performance of carbon fiber/polyetherimide composites by polyetherimide and modified graphene oxide complex emulsion type sizing agent[J]. High Performance Polymers,2022,34(3):292-309. doi: 10.1177/09540083211053742
    [8] LYU H X, JIANG N Y, LI Y Z, et al. Enhanced interfacial and mechanical properties of carbon fiber/PEEK composites by hydroxylated PEEK and carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2021,145(6):10636.
    [9] YANG Y C, WANG T J, WANG S D, et al. Strong interface construction of carbon fiber-reinforced PEEK composites: An efficient method for modifying carbon fiber with crystalline PEEK[J]. Macromolecular Rapid Communications, 2020, 41(24): 2000001.
    [10] LIU H S , ZHAO Y, LI N, et al. Effect of polyetherimide sizing on surface properties of carbon fiber and interfacial strength of carbon fiber/polyetheretherketone compo-sites[J]. Polymer Composites,2020,42(2):931-943.
    [11] CHEN J L, WANG K, ZHAO Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology,2018,154:175-186. doi: 10.1016/j.compscitech.2017.11.005
    [12] LIU H S, ZHAO Y, LI N, et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification[J]. Journal of Materials Research and Technology,2019,8(6):6289-6300. doi: 10.1016/j.jmrt.2019.10.022
    [13] LIU H S, ZHAO Y, CHEN F, et al. Effects of polyetherimide sizing involving carbon nanotubes on interfacial perfor-mance of carbon fiber/polyetheretherketone composites[J]. Polymers for Advanced Technologies,2021,32(9):3689-3700. doi: 10.1002/pat.5389
    [14] 滕凌虹, 曹伟伟, 朱波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2):42-53. doi: 10.11868/j.issn.1001-4381.2020.000358

    TENG Linghong, CAO Weiwei, ZHU Bo, et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg[J]. Materials Engineering,2021,49(2):42-53(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000358
    [15] 杨洋, 徐捷, 原崇新, 等. 连续纤维增强聚苯硫醚预浸料自动铺丝工艺与热塑性复合材料性能研究[J]. 纤维复合材料, 2020, 37(1):3-9. doi: 10.3969/j.issn.1003-6423.2020.01.001

    YANG Yang, XU Jie, YUAN Chongxin, et al. Study on automatic fiber placement technology with continuous carbon fiber reinforced polyphenylene sulfide prepreg and characterization of the thermoplastic composites[J]. Fiber Composites,2020,37(1):3-9(in Chinese). doi: 10.3969/j.issn.1003-6423.2020.01.001
    [16] 李林秀, 岳广全, 杨洋, 等. 连续碳纤维增强聚苯硫醚预浸料层间滑移行为研究[J]. 复合材料科学与工程, 2021(2):24-31.

    LI Linxiu, YUE Guangquan, YANG Yang, et al. Research on interlayer slip behavior of continuous carbon fiber reinforced polyphenylene sulfide prepreg[J]. Composites Science and Engineering,2021(2):24-31(in Chinese).
    [17] 许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020(8):123-128. doi: 10.3969/j.issn.1003-0999.2020.08.019

    XU Yunpeng, YAN Chun, LIU Dong, et al. Progress in preparation technology of continuous fiber reinforced thermoplastic prepregs[J]. Composites Science and Engineering,2020(8):123-128(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.08.019
    [18] SONG J P, ZHAO Y, XIONG S, et al. The synergistic steric hindrance effect in the preparation of polyether ether ketone composites by powder slurry method[J]. Polymer Composites,2022,43(4):2384-2395. doi: 10.1002/pc.26548
    [19] CHEN J L, WANG K, DONG A Q, et al. A comprehensive study on controlling the porosity of CCF300/PEEK compo-sites by optimizing the impregnation parameters[J]. Polymer Composites,2018,39(10):3765-3779. doi: 10.1002/pc.24407
    [20] KHURSHID M F, HENGSTERMANN M, HASAN M M B, et al. Recent developments in the processing of waste carbon fibre for thermoplastic composites-A review[J]. Journal of Composite Materials,2020,54(14):1925-1944. doi: 10.1177/0021998319886043
    [21] SANTOS A C M Q S, MONTICELI F M, ORNAGHI H, et al. Porosity characterization and respective influence on short-beam strength of advanced composite processed by resin transfer molding and compression molding[J]. Polymers and Polymer Composites,2021,29(8):1353-1362.
    [22] MA Y Q, ZHAO Y T, ZHANG Y, et al. Influence of infiltration pressure on the microstructure and properties of 2D-CFRP prepared by the vacuum infiltrationhot pressing molding process[J]. Polymers, 2019, 11(12): 2014.
    [23] TAKAHASHI Y, URIYA Y, YANAGIMOTO J. Optimum design of formable CFRP sheets by generic algorithm and FE analysis by homogenization of multilayered structure with macroscopic anisotropy[J]. International Journal of Material Forming,2016,9(5):697-703. doi: 10.1007/s12289-015-1260-9
    [24] SUN G Y, KONG X R, WANG Z, et al. Experimental investi-gation into stamping of woven CF/PP laminates: Influences of molding temperature on thermal, mesoscopic and macroscopic properties[J]. Composite Structrues,2021,263:113507.
    [25] LU Y, LI Y B, ZHANG Y, et al. Manufacture of Al/CF/PEEK curved beams by hot stamping forming process[J/OL]. Materials and Manufacturing Processes, (2022-02-10) [2022-06-0]. DOI: 10.1080/10426914.2022.2032140.
    [26] 李林秀. 热塑性复合材料热冲压成型褶皱缺陷的形成机理研究[D]. 上海: 东华大学, 2020.

    LI Linxiu. Study on the formation mechanism of wrinkle defects in hot stamping of thermoplastic composites[D]. Shanghai: Donghua University, 2020(in Chinese).
    [27] 纪朝辉, 王宏洋, 孙凌丰, 等. PPS/CF复合材料电阻焊接工艺及性能评价[J]. 焊接学报, 2020, 41(3):80-85, 101.

    JI Chaohui, WANG Hongyang, SUN Lingfeng, et al. Study on resistance welding process of PPS/CF composite[J]. Transactions of the China Welding Institution,2020,41(3):80-85, 101(in Chinese).
    [28] 赵普. 热塑性航空复合材料电阻焊接界面增强设计及机理[D]. 沈阳: 沈阳航空航天大学, 2020.

    ZHAO Pu. Design and mechanism of resistance welding interface enhancemen thermoplastic aerospace composites[D]. Shenyang: Shenyang Aerospace University, 2020(in Chinese).
    [29] 路鹏程, 陈栋, 王志平. 碳纤维/聚苯硫醚热塑性复合材料电阻焊接工艺[J]. 复合材料学报, 2020, 37(5):1041-1048. doi: 10.13801/j.cnki.fhclxb.20190807.002

    LU Pengcheng, CHEN Dong, WANG Zhiping. Resistance welding technology of carbon fiber/polyphenylene sulfide thermoplastic composites[J]. Acta Materiae Compositae Sinica,2020,37(5):1041-1048(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190807.002
    [30] LI X K, SUN M C, SONG J P, et al. Enhanced adhesion between PEEK and stainless-steel mesh in resistance welding of CF/PEEK composites by various surface treatments[J]. High Performance Polymers,2021,33(8):892-904. doi: 10.1177/09540083211001115
    [31] LI X K, ZHANG T Y, LI S, et al. The effect of cooling rate on resistance-welded CF/PEEK joints[J]. Journal of Materials Research and Technology,2021,12:53-62. doi: 10.1016/j.jmrt.2021.02.071
    [32] BRASSARD D, DUBÉ M, TAVARES J R. Resistance welding of thermoplastic composites with a nanocomposite heating element[J]. Composites Part B: Engineering,2019,165:779-784. doi: 10.1016/j.compositesb.2019.02.038
    [33] 王宏洋. CF/PPS复合材料的碳纤维电阻热连接技术研究[D]. 天津: 中国民航大学, 2018.

    WANG Hongyang. Research on carbon fiber electrical resistance thermal connection technology of CF/PPS composite[D]. Tianjin: Civil Aviation University of China, 2018(in Chinese).
    [34] 麻志浩. 碳纤维增强热塑性复合材料自动铺放关键技术研究[D]. 镇江: 江苏科技大学, 2021.

    MA Zhihao. Research on the key technology of automatic placement of carbon fiber reinforced thermoplastic composites[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021(in Chinese).
    [35] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1):83-91. doi: 10.11868/j.issn.1001-4381.2016.000147

    SONG Qinghua, XIAO Jun, WEN Liwei, et al. Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering,2018,46(1):83-91(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000147
    [36] 马志涛, 李初晔, 冯长征, 等. 铺放压力和铺放压辊对丝束铺放质量影响的研究[J]. 航空制造技术, 2018, 61(20):88-91. doi: 10.16080/j.issn1671-833x.2018.20.088

    MA Zhitao, LI Chuye, FENG Changzheng, et al. Effect of placement pressure and placement roller on quality of tows placement[J]. Aeronautical Manufacturing Technology,2018,61(20):88-91(in Chinese). doi: 10.16080/j.issn1671-833x.2018.20.088
    [37] 梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]. 大连: 大连理工大学, 2021.

    LIANG Yi'nan. Automated fiber placement and in-situ consolidation process of CF/PEEK lattice structure[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [38] 宋清华, 肖军, 文立伟, 等. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4):120-126. doi: 10.11868/j.issn.1001-4381.2016.000411

    SONG Qinghua, XIAO Jun, WEN Liwei, et al. Non-isother-mal crystallization kinetics of thermoplastic composite for automated fiber placement[J]. Journal of Materials Engi-neering,2018,46(4):120-126(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000411
    [39] 周冰洁, 张代军, 张英杰, 等. 高性能热塑性复合材料在航空发动机短舱上的应用[J]. 航空制造技术, 2020, 63(7):86-91. doi: 10.16080/j.issn1671-833x.2020.07.086

    ZHOU Bingjie, ZHANG Daijun, ZHANG Yingjie, et al. Applications of thermoplastic composites on aero-engine nacelles[J]. Aeronautical Manufacturing Technology,2020,63(7):86-91(in Chinese). doi: 10.16080/j.issn1671-833x.2020.07.086
    [40] 张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术, 2013(15):32-35. doi: 10.3969/j.issn.1671-833X.2013.15.003

    ZHANG Ting. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology,2013(15):32-35(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.15.003
    [41] MORGAN H. Electroimpact, toray, and janicki advance processing technologies for rapid manufacture of large thermoplastic composite parts[EB/OL]. (2021-09-07)[2022-06-06]. https://www.toraytac.com/media/news-item/2021/9/7/Electroimpact%2c-Toray%2c-and-Janicki-Advance-Processing-Technologies-for-Rapid-Manufacture-of-Large-Thermoplastic-Composite-Parts.
    [42] CHRIS R. Thermoplastics in aerospace composites outlook, 2014-2023[EB/OL]. (2014-09-01)[2022-06-06]. https://www.compositesworld.com/articles/the-outlook-for-thermoplastics-in-aerospace-composites-2014-2023.
    [43] GINGER G. Welding thermoplastic composites[EB/OL]. (2018-09-01)[2022-06-06]. https://www.compositesworld.com/articles/welding-thermoplastic-composites.
  • 加载中
图(10)
计量
  • 文章访问数:  2056
  • HTML全文浏览量:  524
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 修回日期:  2022-07-11
  • 录用日期:  2022-07-26
  • 网络出版日期:  2022-08-09
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回