留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双基协同阻燃环氧树脂HPCTP-DOPS/EP的性能研究

许志彦 侯泽明 叶小林 祁钰昭 许松江 宝冬梅 张道海 周国永 蔡晓东 邹光龙 文竹

许志彦, 侯泽明, 叶小林, 等. 双基协同阻燃环氧树脂HPCTP-DOPS/EP的性能研究[J]. 复合材料学报, 2023, 40(4): 2187-2198. doi: 10.13801/j.cnki.fhclxb.20220607.006
引用本文: 许志彦, 侯泽明, 叶小林, 等. 双基协同阻燃环氧树脂HPCTP-DOPS/EP的性能研究[J]. 复合材料学报, 2023, 40(4): 2187-2198. doi: 10.13801/j.cnki.fhclxb.20220607.006
XU Zhiyan, HOU Zeming, YE Xiaolin, et al. Study on the properties of flame-retardant epoxy resin HPCTP-DOPS/EP with double groups synergistic flame retardant effect[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2187-2198. doi: 10.13801/j.cnki.fhclxb.20220607.006
Citation: XU Zhiyan, HOU Zeming, YE Xiaolin, et al. Study on the properties of flame-retardant epoxy resin HPCTP-DOPS/EP with double groups synergistic flame retardant effect[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2187-2198. doi: 10.13801/j.cnki.fhclxb.20220607.006

双基协同阻燃环氧树脂HPCTP-DOPS/EP的性能研究

doi: 10.13801/j.cnki.fhclxb.20220607.006
基金项目: 国家自然科学基金(51863004;52163001);贵州省科技计划项目(黔科合基础[2020]1Y211;ZK[2021]一般248;ZK[2022]216;CXTD[2021]005);贵州民族大学高分子复合材料工程研究中心(GZMUGCZX[2021]-01)
详细信息
    通讯作者:

    宝冬梅,博士,教授,硕士生导师,研究方向为聚合物基阻燃复合材料 E-mail: dongtian1314521@163.com

  • 中图分类号: TB332

Study on the properties of flame-retardant epoxy resin HPCTP-DOPS/EP with double groups synergistic flame retardant effect

Funds: Natural Science Foundation of China (51863004; 52163001); Guizhou Provincial Science and Technology Projects ([2020]1Y211; ZK[2021]248; ZK[2022]216; CXTD[2021]005); Polymer Composites Engineering Research Center, Guizhou Minzu University (GZMUGCZX[2021]-01)
  • 摘要: 单一的磷杂菲、磷腈类阻燃剂的阻燃效果有限,为了改善9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS)对环氧树脂(EP)的阻燃效果,将DOPS和六苯氧基环三磷腈(HPCTP)复配应用于EP。在总含P量为1.2wt%时,通过调整磷杂菲和磷腈阻燃剂中含P量的比例,将DOPS和HPCTP复配添加到EP中,制备EP复合材料。利用极限氧指数(LOI)、垂直燃烧(UL-94)、热重(TG)、锥形量热(CONE)、扫描电镜-能量色散X射线谱(SEM-EDS)、热重-红外光谱联用(TG-IR)等测试手段研究不同比例的磷杂菲和磷腈基团对EP热稳定性和阻燃性能的影响,探究双基协同阻燃规律和机制。研究结果表明:P、S元素之间存在协同阻燃作用,当总含P量为1.2wt%时,复合体系中随着含S量的增加,HPCTP-DOPS/EP的LOI值和UL-94等级逐渐升高,当HPCTP和DOPS中的含P量比为0.2∶1时,HPCTP-DOPS/EP的LOI值为30.4%,达到UL-94 V-0级,总热释放量(THR)和热释放速率峰值(PHRR)显著降低,燃烧后形成了更加致密、稳定的膨胀炭层,优于两种阻燃剂单独使用对EP的阻燃效果,即磷腈和磷杂菲两种阻燃剂之间存在着协同阻燃效应。从阻燃机制看,DOPS和HPCTP分别在气相和凝聚相发挥协同阻燃作用。

     

  • 图  1  DOPS和HPCTP的分子结构

    Figure  1.  Molecular structure of DOPS and HPCTP

    图  2  EP及其复合材料在N2下的TG (a)和DTG (b)曲线

    Figure  2.  TG (a) and DTG (b) curves of EP and EP composites in N2

    图  3  EP及其复合材料的HRR (a)、THR (b)、TSR (c)和CO2产率(CO2P) (d)曲线

    Figure  3.  HRR (a), THR (b), TSR (c) and carbon dioxide production rate (CO2P) (d) curves of EP and EP composites

    图  4  锥量测试后残炭的数码照片:((a)、(a')) EP;((b)、(b')) 1.2HPCTP/EP;((c)、(c')) 0.2HPCTP-1.0DOPS/EP;((d)、(d')) 1.2 DOPS/EP

    Figure  4.  Digital photographs of char residue after cone calorimeter test: ((a), (a')) EP; ((b), (b')) 1.2HPCTP/EP; ((c), (c')) 0.2HPCTP-1.0DOPS/EP; ((d), (d')) 1.2DOPS/EP

    图  5  EP及其复合材料锥形量热测试后残炭的SEM图像:(a) EP;(b) 1.2HPCTP/EP;(c) 0.2HPCTP-1.0DOPS/EP;(d) 1.2DOPS/EP

    Figure  5.  SEM images of char residue of EP and EP composites after cone calorimeter test: (a) EP; (b) 1.2HPCTP/EP; (c) 0.2HPCTP-1.0DOPS/EP; (d) 1.2DOPS/EP

    图  6  EP及其复合材料的三维TG-IR图谱:(a) EP;(b) 1.2HPCTP/EP;(c) 0.2HPCTP-1.0DOPS/EP;(d) 1.2DOPS/EP

    Figure  6.  3D TG-IR spectra of EP and EP composites: (a) EP; (b) 1.2HPCTP/EP; (c) 0.2HPCTP-1.0DOPS/EP; (d) 1.2DOPS/EP

    图  7  不同温度下EP及其复合材料裂解产物的吸光度图:(a) EP;(b) 1.2HPCTP/EP;(c) 0.2HPCTP-1.0DOPS/EP;(d) 1.2DOPS/EP

    Figure  7.  Absorbance of pyrolysis products of EP and EP composites at different temperatures: (a) EP; (b) 1.2HPCTP/EP; (c) 0.2HPCTP-1.0DOPS/EP; (d) 1.2DOPS/EP

    图  8  EP及其复合材料气相分解产物的释放强度

    Figure  8.  Release strength of gas phase decomposition products of EP and EP composites

    表  1  阻燃环氧树脂(EP)复合材料(总含P量1.2wt%)的配方设计

    Table  1.   Formulation of flame retardant epoxy resin (EP) composites (Total P content 1.2wt%)

    SampleP/wt%S/wt%EP/gDDS/gHPCTP/gDOPS/gP(HPCTP)∶P(DOPS)
    EP 0.0 3.09 100 31.6 0∶0
    1.2HPCTP/EP 1.2 2.82 100 31.6 12.94 0.00 1.2∶0
    1.0HPCTP/0.2DOPS/EP 1.2 3.03 100 31.6 10.79 2.17 1.0∶0.2
    0.8HPCTP-0.4DOPS/EP 1.2 3.23 100 31.6 8.63 4.33 0.8∶0.4
    0.6HPCTP-0.6DOPS/EP 1.2 3.44 100 31.6 6.47 6.50 0.6∶0.6
    0.4HPCTP-0.8DOPS/EP 1.2 3.65 100 31.6 4.31 8.66 0.4∶0.8
    0.2HPCTP-1.0DOPS/EP 1.2 3.85 100 31.6 2.16 10.83 0.2∶1.0
    1.2DOPS/EP 1.2 4.06 100 31.6 0.00 13.00 0∶1.2
    Notes: DDS—4,4'-diaminodiphenyl sulfone; HPCTP—Hexa (phenoxy) cyclotriphosphazene; DOPS—9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-sulfide; P(HPCTP)∶P(DOPS)—Ratio of P content in flame retardants HPCTP and DOPS.
    下载: 导出CSV

    表  2  EP及其复合材料的极限氧指数(LOI)和垂直燃烧(UL-94)数据

    Table  2.   Limiting oxygen index test (LOI) and vertical flame test (UL-94) data of EP and EP composites

    SampleLOI/%UL-94
    t1/t2(s)DrippingRating
    EP 22.2 —/— No N.R.
    1.2HPCTP/EP 28.8 4.58/— No N.R.
    1.0HPCTP-0.2DOPS/EP 29.4 2.73/47.08 No V-1
    0.8HPCTP-0.4DOPS/EP 29.5 5.30/32.52 No V-1
    0.6HPCTP-0.6DOPS/EP 29.9 5.44/11.57 No V-1
    0.4HPCTP-0.8DOPS/EP 30.0 2.17/10.22 No V-1
    0.2HPCTP-1.0DOPS/EP 30.4 2.63/7.28 No V-0
    1.2DOPS/EP 29.7 4.93/10.99 No V-1
    Notes: t1/t2—First and second combustion time in UL-94 test.
    下载: 导出CSV

    表  3  EP及其复合材料在N2下的TG和DTG数据

    Table  3.   TG and DTG data of EP and EP composites in N2

    SampleT5%/℃TP1/℃TP2/℃Rmax1/(%·℃−1)Rmax2/(%·℃−1)Char residue at
    600℃/%
    DOPS205.71221.20379.300.300.82 7.45
    HPCTP341.33424.671.65 3.51
    EP376.84411.081.9314.18
    1.2HPCTP/EP307.02377.691.0923.43
    0.2HPCTP-1.0DOPS/EP296.97377.830.8126.06
    1.2DOPS/EP287.91378.600.8422.22
    Notes: T5%—Temperature corresponding to mass loss 5wt% of material; TP—Temperature corresponding to maximum thermal degradation rate; Rmax—Maximum thermal degradation rate.
    下载: 导出CSV

    表  4  EP及其复合材料的锥形量热测试数据

    Table  4.   Cone calorimeter test data of EP and EP composites

    SampleTTI/sPHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    av-EHC/
    (MJ·kg−1)
    TSR/
    (m2·m−2)
    av-CO2Y/
    (kg·kg−1)
    av-COY/
    (kg·kg−1)
    EP 75 1235.10 116.49 30.67 2250.92 4.39 0.42
    1.2HPCTP/EP 72 525.34 93.74 30.77 1976.23 3.32 0.55
    0.2HPCTP-1.0DOPS/EP 63 513.57 99.21 27.92 2197.75 3.37 0.45
    1.2DOPS/EP 59 583.18 103.87 27.28 2271.40 3.80 0.53
    Notes: TTI—Time to ignition; PHRR—Peak heat release rate; THR—Total heat release; av-EHC—Average effective heat of combustion; TSR—Total smoke release; av-CO2Y—Average carbon dioxied yield; av-COY—Average carbon monoxide yield.
    下载: 导出CSV

    表  5  EP及其复合材料残炭的EDS数据

    Table  5.   EDS data of char residue of EP and EP composites

    SampleC/wt%O/wt%P/wt%S/wt%
    EP 78.78 20.97 0.25
    1.2HPCTP/EP 56.28 35.85 7.38 0.49
    0.2HPCTP-1.0DOPS/EP 75.81 17.23 5.50 1.46
    1.2DOPS/EP 73.33 22.02 3.73 0.92
    下载: 导出CSV
  • [1] KUMAR S, KRISHNAN S, SAMAL S K, et al. Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review[J]. Industrial & Engineering Chemistry Research,2018,57(8):2711-2726.
    [2] GHARIEH A, SEYED M S. A systematic study on the synergistic effects of MWCNTs and core-shell particles on the physicomechanical properties of epoxy resin[J]. Scientific Reports,2021,11:20789. doi: 10.1038/s41598-021-00333-3
    [3] GU J, YANG X, LI C, et al. Synthesis of cyanate ester microcapsules via solvent evaporation technique and its application in epoxy resins as a healing agent[J]. Industrial & Engineering Chemistry Research,2016,55(41):10941-10946.
    [4] CHEN R, LUO Z J, YU X J, et al. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin[J]. Carbohydrate Polymers,2020,245:116530. doi: 10.1016/j.carbpol.2020.116530
    [5] MA C, QIU S L, YU B, et al. Economical and environment-friendly synthesis of a novel hyperbranched poly (aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins[J]. Chemical Engineering Journal,2017,322(14):618-631.
    [6] ZHAO X M, BABU H V, LLORCA J, et al. Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: Synthesis, fire behaviour, flame-retardant mechanism and mechanical properties[J]. RSC Advances,2016,6(64):59226-59236. doi: 10.1039/C6RA13168A
    [7] LUO F P, YAN W, GUO W H, et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry,2017,130(2):813-821. doi: 10.1007/s10973-017-6448-4
    [8] 许志彦, 侯泽明, 叶小林, 等. 硫化DOPO衍生物阻燃环氧树脂的性能与阻燃机制[J]. 复合材料学报, 2022, 39(10): 4518-4530.

    XU Zhiyan, HOU Zeming, YE Xiaolin, et al. Properties and flame retardant mechanism of sulfuretted DOPO derivative in epoxy resin[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4518-4530(in Chinese).
    [9] 王建航, 许志彦, 张玉鹏, 等. 磷杂菲/环氧树脂复合材料的热分解动力学研究[J]. 功能材料, 2020, 51(11):11152-11158. doi: 10.3969/j.issn.1001-9731.2020.11.022

    WANG Jianhang, XU Zhiyan, ZHANG Yupeng, et al. Thermal decomposition kinetics of phosphaphenan- threne/epoxy composites[J]. Journal of Functional Materials,2020,51(11):11152-11158(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.11.022
    [10] 陈仕梅, 来方, 李霈, 等. 磷杂菲类阻燃剂的合成及其与聚磷酸铵复合膨胀体系对环氧树脂的阻燃性能研究[J]. 高分子学报, 2017(8):1358-1365.

    CHEN Shimei, LAI Fang, LI Pei, et al. Synthesis of flame retardant based on phosphaphenanthre-ne and flame retardancy study of epoxy resin modified by intumescent flame retardant system composed of ammonium polyphosphate[J]. Acta Polymerica Sinica,2017(8):1358-1365(in Chinese).
    [11] 陈仕梅. 磷杂菲类阻燃剂的合成及在环氧树脂中的应用[D]. 贵阳: 贵州师范大学, 2018.

    CHEN Shimei. Synthesis of flame retardant based on phospha-phenanthrene and its application in epoxy resin[D]. Guiyang: Guizhou Normal University, 2018(in Chinese).
    [12] ZHANG C L, PAN M, QU L J, et al. Effect of phosphorus-containing flame retardants on flame retardancy and thermal stability of tetrafunctional epoxy resin[J]. Polymers Advanced Technologies,2015,26:1531-1536. doi: 10.1002/pat.3576
    [13] 中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为第1部分: 导则: GB/T 2406.1—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index—Part 1: Guidance: GB/T 2406.1—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [14] 中国国家标准化管理委员会. 塑料 燃烧性能的测定: 水平法和垂直法: GB/T 2408—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [15] International Organization for Standardization. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate(cone calorimeter method): ISO 5660-1—2002[S]. Geneva: ISO, 2002.
    [16] 孙楠, 钱立军, 许国志, 等. 六苯氧基环三磷腈的热解及其对环氧树脂的阻燃机制[J]. 中国科学: 化学, 2014, 44(7):1195-1202.

    SUN Nan, QIAN Lijun, XU Guozhi, et al. Pyrolysis of hexa-phenoxyl-cyclophosphazene and its flame retardant mechanism to epoxy resin[J]. Scientia Sinica (Chimica),2014,44(7):1195-1202(in Chinese).
    [17] 卢林刚, 程哲, 邱新铭, 等. 星型绿色磷腈阻燃剂的制备及阻燃环氧树脂性能[J]. 高等学校化学学报, 2018, 39(12):2789-2796. doi: 10.7503/cjcu20180339

    LU Lingang, CHENG Zhe, QIU Xinming, et al. Preparation of green star-topology phosphazene flame retardant and properties of flame-retardant epoxy resin[J]. Chemical Journal of Chinese Universities,2018,39(12):2789-2796(in Chinese). doi: 10.7503/cjcu20180339
    [18] 钱立军, 孙楠, 许国志. 分子间磷杂菲与磷腈双基协同阻燃环氧树脂研究[J]. 工程塑料应用, 2013, 41(7):4-7. doi: 10.3969/j.issn.1001-3539.2013.07.001

    QIAN Lijun, SUN Nan, XU Guozhi. Flame retardant synergistic effect of intermolecular phosphaphenanthrene and phosphazene groups on epoxy resin[J]. Engineering Plastics Application,2013,41(7):4-7(in Chinese). doi: 10.3969/j.issn.1001-3539.2013.07.001
    [19] 鲜爽, 尹晨辉, 江民文, 等. DOPO/环己胺接枝环三磷腈衍生物的合成及其阻燃性能研究[J]. 化学粘合, 2020, 42(6):399-404.

    XIAN Shuang, YIN Chenhui, JIANG Minwen, et al. Synthesis and flame retardant property of cyclotriphosphazene derivative grafted with DOPO and cyclohexylamine[J]. Chemistry and Adhesion,2020,42(6):399-404(in Chinese).
    [20] TENG N, DAI J Y, WANG S P, et al. Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature[J]. Chemical Engineering Journal,2022,428(15):131226.
    [21] 王峰, 徐路, 苏倩, 等. 六苯氧基环三磷腈对聚碳酸酯的阻燃作用[J]. 现代塑料加工应用, 2014, 26(4):25-28. doi: 10.3969/j.issn.1004-3055.2014.04.007

    WANG Feng, XU Lu, SU Qian, et al. Effect of hexaphenoxycyclotriphosphazene on polycarbonate flame-retardant effect[J]. Modern Plastics Processing and Applications,2014,26(4):25-28(in Chinese). doi: 10.3969/j.issn.1004-3055.2014.04.007
    [22] 王建航, 许志彦, 叶小林, 等. DOPS 衍生物阻燃剂的合成及聚乳酸复合材料的性能[J]. 精细化工, 2022, 39(2):396-402.

    WANG Jianhang, XU Zhiyan, YE Xiaolin, et al. Synthesis of flame retardant based on DOPS derivatives and properties of polylactic acid composites[J]. Fine Chemicals,2022,39(2):396-402(in Chinese).
    [23] YANG Y, LIU J, CAI X. Antagonistic flame retardancy between hexakis (4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system[J]. Journal of Thermal Analysis Calorimetry,2016,126(2):571-583. doi: 10.1007/s10973-016-5519-2
    [24] 马婷, 申峻, 盛清涛, 等. 几种酯类溶剂对SO2的吸收机制[J]. 煤炭转化, 2019, 4(4):89-96.

    MA Ting, SHEN Jun, SHENG Qingtao, et al. Machanism of absorbing SO2 by several ester solvents[J]. Coal Conversion,2019,4(4):89-96(in Chinese).
    [25] BATTIG A, MARKWART J, WURM F, et al. Sulfur's role in the flame retardancy of thio-ether-linked hyperbranched poly(phosphoesters) in epoxy resins[J]. European Polymer Journal,2019,122:109390.
    [26] FANG Y C, ZHOU X, XING Z Q, et al. An effective flame retardant for poly(ethylene terephthalate) synthesized by phosphaphenanthrene and cyclotripho- sphazene[J]. Journal of Applied Polymer Science,2017,134(35):45246-45253. doi: 10.1002/app.45246
    [27] YU S L, XIANG H X, ZHOU J L, et al. Enhanced flame-retardant performance of poly (lactic acid) (PLA) composite by using intrinsically phosphorus-containing PLA[J]. Progress in Natural Science:Materials International,2018,28(5):590-597. doi: 10.1016/j.pnsc.2018.09.002
    [28] VELENCOSO M M, BATTIG A, MARKWART J C, et al. Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy[J]. Angewandte Chemie International Edition,2018,57(33):10450-10467. doi: 10.1002/anie.201711735
    [29] 魏振乾. 含磷阻燃剂在环氧树脂中的应用研究[D]. 青岛: 山东科技大学, 2020.

    WEI Zhenqian. Application study of phosphorus containing flame retardant in epoxy resin[D]. Qingdao: Shandong University of Science and Technology, 2020(in Chinese).
    [30] ZHU Z M, WANG L X, DONG L P, et al. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin[J]. Polymer Degradation and Stability,2019,162:129-137. doi: 10.1016/j.polymdegradstab.2019.02.021
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  534
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-05-20
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回