留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废弃瓷砖粉对超高性能混凝土的抗压强度影响规律与机制

张立卿 潘延念 胡文兵 许开成 付书城 陈梦成 韩宝国

张立卿, 潘延念, 胡文兵, 等. 废弃瓷砖粉对超高性能混凝土的抗压强度影响规律与机制[J]. 复合材料学报, 2023, 40(3): 1611-1623. doi: 10.13801/j.cnki.fhclxb.20220630.002
引用本文: 张立卿, 潘延念, 胡文兵, 等. 废弃瓷砖粉对超高性能混凝土的抗压强度影响规律与机制[J]. 复合材料学报, 2023, 40(3): 1611-1623. doi: 10.13801/j.cnki.fhclxb.20220630.002
ZHANG Liqing, PAN Yannian, HU Wenbing, et al. Effect law and mechanism of ceramic tile powder on compressive strength of ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1611-1623. doi: 10.13801/j.cnki.fhclxb.20220630.002
Citation: ZHANG Liqing, PAN Yannian, HU Wenbing, et al. Effect law and mechanism of ceramic tile powder on compressive strength of ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1611-1623. doi: 10.13801/j.cnki.fhclxb.20220630.002

废弃瓷砖粉对超高性能混凝土的抗压强度影响规律与机制

doi: 10.13801/j.cnki.fhclxb.20220630.002
基金项目: 国家自然基金地区项目(51968021);江西自然科学基金(20202BAB204031;20202BABL214042);江西省教育厅一般项目(GJJ210656);轨道交通基础设施性能监测与保障国家重点实验室自主课题(HJGZ2021208)
详细信息
    通讯作者:

    许开成,博士,教授, 博士生导师,研究方向为超高性能混凝土的制备及应用 E-mail: xkcxj@ecjtu.edu.cn

  • 中图分类号: TU528.59

Effect law and mechanism of ceramic tile powder on compressive strength of ultra high performance concrete

Funds: Regional Project of National Natural Science Foundation of China (51968021); Jiangxi Natural Science Foundation (20202BAB204031; 20202BABL214042); Jiangxi Provincial Department of Education General Project (GJJ210656); The Independent Subject of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure (HJGZ2021208)
  • 摘要: 超高性能混凝土极低的水胶比和较高的水泥用量,使其在广泛应用中面临着水泥基体高自收缩和高成本等问题,而使用工业副产品或废弃物取代部分水泥是有效的解决方法之一。废品瓷砖已成为一种大宗工业废弃物,应用瓷砖粉在超高性能混凝土中可有效地解决水泥的高消耗和废弃瓷砖的堆积问题。因此,使用瓷砖粉取代水泥质量的10wt%、15wt%、20wt%和25wt%来制备新型绿色低碳超高性能混凝土,主要研究了瓷砖粉对超高性能混凝土抗压强度的影响规律,并采用修正Andreasen堆积模型、XRD分析、TG/DTG、SEM观察探讨了瓷砖粉对超高性能混凝土的改性机制,同时对瓷砖粉超高性能混凝土的环境足迹和成本进行了分析。研究结果表明,瓷砖粉的掺入对超高性能混凝土各龄期抗压影响在±10%以内,但对7~28天和28~60天的抗压强度发展影响显著,在25wt%掺量时抗压强度增长率分别达到了104.6%和51.8%。这主要是由于瓷砖粉的掺入提高了超高性能混凝土的堆积密实度,发生二次水化反应并生成了低钙硅比的水化硅酸钙凝胶,提高了水泥的水化程度,降低了界面过渡区的宽度。并且由环境影响和成本计算可知,瓷砖粉可有效降低超高性能混凝土的能耗、CO2排放量和成本。

     

  • 图  1  水泥、CTP和硅灰的粒径分布

    Figure  1.  Particle distributions of cement, CTP and silica fume

    图  2  CTP的XRD图谱

    Figure  2.  XRD pattern of CTP

    图  3  CTP的SEM图像

    Figure  3.  SEM image of CTP

    图  4  瓷砖粉UHPC搅拌流程

    Figure  4.  Mixing process of UHPC with ceramic tile powder

    图  5  试验期间温度

    Figure  5.  Temperature during experiment

    图  6  不同瓷砖粉掺量UHPC 3天、7天、28天和60天的抗压强度 (a) 和增长率 (b)

    Figure  6.  Compressive strength (a) and increase rate (b) of UHPC with different contents of CTP at 3 days, 7 days, 28 days and 60 days

    图  7  不同瓷砖粉掺量UHPC 0~3天、3~7天、7~28天和28~60天抗压强度的增长值 (a) 和增长率 (b)

    Figure  7.  Increase value (a) and increase rate (b) of compressive strength of UHPC with different contents of CTP from 0-3 days, 3-7 days, 7-28 days and 28-60 days

    图  8  不同CTP掺量UHPC修正Andreasen堆积模型

    Figure  8.  Modified Andreasen stacking model diagram of UHPC with different contents of CTP

    图  9  不同CTP掺量 UHPC的残差平方和SRSS

    Figure  9.  Residual sum of squares SRSS of UHPC with different contents of CTP

    图  10  不同瓷砖粉掺量UHPC的XRD图谱

    Figure  10.  XRD patterns of UHPC with different contents of CTP

    图  11  不同CTP掺量 UHPC 7天的TG (a) 和DTG (b) 曲线

    Figure  11.  TG (a) and DTG (b) curves for UHPC with different contents of CTP at 7 days

    图  13  不同CTP掺量UHPC的Ca(OH)2含量NCH

    Figure  13.  Ca(OH)2 content NCH of UHPC with different contents of CTP

    图  12  不同CTP掺量UHPC 28天的TG (a)和DTG (b)曲线

    Figure  12.  TG (a) and DTG (b) curves for UHPC with different contents of CTP at 28 days

    图  14  不同CTP掺量 UHPC的水化程度 βt

    Figure  14.  Hydration degrees βt of UHPC with different contents of CTP

    图  15  不同CTP掺量UHPC界面过渡区(ITZ) SEM图像:(a) 0wt%CTP;(b) 10wt%CTP;(c) 25wt%CTP

    Figure  15.  SEM images of interfacial transition zone (ITZ) of UHPC with different contents of CTP: (a) 0wt%CTP; (b) 10wt%CTP; (c) 25wt%CTP

    图  16  不同CTP掺量UHPC的ITZ宽度

    Figure  16.  Thickness of ITZ of UHPC with different contents of CTP

    图  17  不同CTP掺量UHPC 7天的EDS图像:(a) 0wt%CTP;(b) 10wt%CTP;(c) 25wt%CTP

    Figure  17.  EDS images of UHPC at 7 days with different contents of CTP: (a) 0wt%CTP; (b) 10wt%CTP; (c) 25wt%CTP

    图  18  不同CTP掺量UHPC 28天的EDS图像:(a) 0wt%CTP;(b) 10wt%CTP;(c) 25wt%CTP

    Figure  18.  EDS images of UHPC at 28 days with different contents of CTP: (a) 0wt%CTP; (b) 10wt%CTP; (c) 25wt%CTP

    图  19  不同CTP掺量UHPC的钙硅比(a)和降低率(b)

    Figure  19.  Ca/Si (a) and decrease rate (b) for UHPC with different contents of CTP

    表  1  水泥、瓷砖粉(CTP)和硅灰的化学组成

    Table  1.   Chemical compositions of cement, ceramic tile powder (CTP) and silica fume

    Chemical compositionCement/wt%CTP/wt%Silica fume/wt%
    SiO2 22.35 78.3 95.7
    Al2O3 6.30 15.9
    CaO 55.73 0.9
    Fe2O3 4.91
    Na2O 0.07 1.9 0.11
    K2O 0.68 2.1 0.45
    MgO 2.84 0.8
    SO3 2.47
    R2O 0.39
    Cl 0.02
    LOI 1.15 2.95
    Note: LOI—Limit oxygen index.
    下载: 导出CSV

    表  2  不同CTP掺量超高性能混凝土(UHPC)的配合比

    Table  2.   Mix proportions of ultra high performance concretes (UHPC) with different contents of CTP (kg·m−3)

    Specimen codeBinderWaterSandSteel fiberSP
    CementSilica fumeCTP
    UHPC(0wt%CTP) 1026.0 114.0 0.0 205.2 1140.0 156.0 17.1
    UHPC(10wt%CTP) 912.0 114.0 114.0 205.2 1140.0 156.0 17.1
    UHPC(15wt%CTP) 855.0 114.0 171.0 205.2 1140.0 156.0 17.1
    UHPC(20wt%CTP) 798.0 114.0 228.0 205.2 1140.0 156.0 17.1
    UHCP(25wt%CTP) 741.0 114.0 285.0 205.2 1140.0 156.0 17.1
    Note: SP—Superplasticizer.
    下载: 导出CSV

    表  3  材料能耗、CO2排放量和成本

    Table  3.   Energy intensity, CO2 emission, and cost of materials

    MaterialEnergy intensity/
    (MJ·kg−1)
    CO2 emission/
    kg
    Cost/
    (RMB·ton−1)
    Cement5.50.930 680
    Silica fume0.10.008 2500
    CTP1.40.370 360
    下载: 导出CSV

    表  4  不同CTP掺量UHPC的材料可持续性指标(MSIs)和成本比较

    Table  4.   Material sustainability indicators (MSIs) and cost comparison of UHPC with different contents of CTP

    MaterialEnergy intensity/
    (MJ·kg−1)
    Decrease of energy intensity/%CO2 emission/kgDecrease of
    CO2 emission/%
    Cost/
    (RMB·ton−1)
    Decrease of cost/%
    90wt%Cement+10wt%Silica fume 5.0 0.0 0.84 0.0 862 0.0
    80wt%Cement+10wt%Silica fume+10wt%CTP 4.6 8.0 0.78 7.1 830 3.7
    75wt%Cement+10wt% Silica fume+15wt%CTP 4.3 14.0 0.75 10.7 814 5.6
    70wt%Cement+10wt%Silica fume+20wt%CTP 4.1 18.0 0.73 13.1 798 7.4
    65wt%Cement+10wt%Silica fume+25wt%CTP 3.9 22.0 0.70 16.7 782 9.3
    下载: 导出CSV
  • [1] 杨娟, 朋改非, 税国双. 再生钢纤维增韧超高性能混凝土的力学性能[J]. 复合材料学报, 2019, 36(8):1949-1956.

    YANG Juan, PENG Gaifei, SHUI Guoshuang. Mechanical properties of recycled steel fiber reinforced ultra-high-performance concrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1949-1956(in Chinese).
    [2] 姜海波, 冯家辉, 肖杰, 等. 体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索[J]. 复合材料学报, 2022, 39(2):707-717.

    JIANG Haibo, FENG Jiahui, XIAO Jie, et al. Experimental study on shear behavior of externally prestressed ultra-high performance concrete beams without stirrups[J]. Acta Materiae Compositae Sinica,2022,39(2):707-717(in Chinese).
    [3] 杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.

    YANG Juan, PENG Gaifei. Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2016,33(12):2931-2940(in Chinese).
    [4] 过震文, 刘小方, 段昕智, 等. 超高性能混凝土在环境温度变化下的力学性能试验研究[J]. 复合材料学报, 2021, 38(10):3495-3503.

    GUO Zhenwen, LIU Xiaofang, DUAN Xinzhi, et al. Experiment study on mechanical properties of ultra-high performance concrete under ambient temperature change[J]. Acta Materiae Compositae Sinica,2021,38(10):3495-3503(in Chinese).
    [5] QIU L S, DONG S F, YU X, et al. Self-sensing ultra-high performance concrete for in-sit monitoring[J]. Sensors and Actuators A: Physical,2021,331:113049. doi: 10.1016/j.sna.2021.113049
    [6] 许开成, 谢国强, 陈梦成, 等. 锂云母渣作为混凝土掺合料的制备工艺研究[J]. 混凝土, 2016(11):130-132. doi: 10.3969/j.issn.1002-3550.2016.11.035

    XU Kaicheng, XIE Guoqiang, CHEN Mengcheng, et al. Research on processing technology of lepidolite slag as admixture of concrete[J]. Concrete,2016(11):130-132(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.035
    [7] 许开成, 毕丽苹, 陈梦成. 锂渣混凝土的配合比设计研究[J]. 混凝土, 2017(1):125-129. doi: 10.3969/j.issn.1002-3550.2017.01.031

    XU Kaicheng, BI Liping, CHEN Mengcheng. Study on mixproportion design of lithium slag concrete[J]. Concrete,2017(1):125-129(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.01.031
    [8] 魏慧男, 刘铁军, 邹笃建, 等. 含废弃玻璃的绿色超高性能混凝土制备及性能[J]. 建筑材料学报, 2021, 24(3):492-498. doi: 10.3969/j.issn.1007-9629.2021.03.007

    WEI Huinan, LIU Tiejun, ZOU Dujian, et al. Preparation and properties of green ultra-high performance concrete containing waste glass[J]. Journal of Building Materials,2021,24(3):492-498(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.03.007
    [9] 陈梦成, 袁明胜, 刘宇翔. 陶瓷粉混凝土正交设计试验研究[J]. 混凝土, 2018(4):102-106. doi: 10.3969/j.issn.1002-3550.2018.04.026

    CHEN Mengcheng, YUAN Mingsheng, LIU Yuxiang. Experimental study on orthogonal design of ceramic poowder concrete[J]. Concrete,2018(4):102-106(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.04.026
    [10] HEIDARI A, TAVAKOLI S, TAVAKOLI D. Reusing waste ceramic and waste sanitary ware in concrete as pozzolans with nano-silica and metakaolin[J]. International Journal of Sustainable Construction Engineering and Technology, 2019, 10(1): 55-67.
    [11] MEYER C. The greening of the concrete industry[J]. Cement and Concrete Composites,2009,31(8):601-605. doi: 10.1016/j.cemconcomp.2008.12.010
    [12] SUBASI S, ÖZTÜRK H, EMIROGLU M. Utilizing of waste ceramic powders as filler material in self-consolidating concrete[J]. Construction and Building Materials,2017,149:567-574. doi: 10.1016/j.conbuildmat.2017.05.180
    [13] LI L, LIU W F, YOU Q X, et al. Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials[J]. Journal of Cleaner Production,2020,259:120853. doi: 10.1016/j.jclepro.2020.120853
    [14] ATTAELMANAN M, KAMBAL M E M, MANSOUR M I. A study the effect of using ceramic waste powder as partial replacement for cement on concrete properties[J]. Journal of Karary University for Engineering and Science, 2021, 1(1): 1-7.
    [15] EL-DIEB A S, KANAAN D M. Ceramic waste powder an alternative cement replacement—Characterization and evaluation[J]. Sustainable Materials and Technologies,2018,17:e63.
    [16] BABRIA J P, PITRODA J R, VAGHELA K B. Effective use of ceramic waste powder as partial replacement of cement in establishing sustainable concrete[J]. Journal of Emerging Technologies and Innovative Research, 2019, 6(4): 337-348.
    [17] BHARGAV M, KANSAL R. Experimental investigation to substitute of cement with ceramic tiles powder in concrete[J]. International Journal for Research in Applied Science and Engineering Technology, 2020, 8(IX): 45-98.
    [18] LI L G, ZHUO Z Y, ZHU J, et al. Reutilizing ceramic polishing waste as powder filler in mortar to reduce cement content by 33% and increase strength by 85%[J]. Powder Technology,2019,355:119-126. doi: 10.1016/j.powtec.2019.07.043
    [19] MOHIT M, SHARIFI Y. Ceramic waste powder as alternative mortar-based cementitious material[J]. ACI Materials Journal,2019,116(6):107-116.
    [20] KUMAR V P, REDDY K C. Durability aspects of concrete by partial replacement of cement by ceramic waste[J]. International Journal of Civil Engineering,2017,8:22-30.
    [21] SCHRÖFL C, GRUBER M, PLANK J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)[J]. Cement and Concrete Research,2012,42(11):1401-1408. doi: 10.1016/j.cemconres.2012.08.013
    [22] 龚建清. 超高性能混凝土的级配效应研究[D]. 长沙: 湖南大学, 2008.

    GONG Jianqing. Study on gradation effect of ultra high performance concrete[D]. Changsha: Hunan University, 2008(in Chinese).
    [23] 苏艺凡. 高流态超高性能混凝土的制备及性能研究[J]. 混凝土世界, 2022(1):61-64. doi: 10.3969/j.issn.1674-7011.2022.01.013

    SU Yifan. Study on preparation and properties of high flow ultra-high performance concrete[J]. China Concrete,2022(1):61-64(in Chinese). doi: 10.3969/j.issn.1674-7011.2022.01.013
    [24] 陈飞翔, 陈尚雷, 张国志, 等. 珊瑚礁砂制备超高性能混凝土的可行性研究[J]. 混凝土, 2020(7):65-69. doi: 10.3969/j.issn.1002-3550.2020.07.015

    CHEN Feixiang, CHEN Shanglei, ZHANG Guozhi, et al. Feasibility study on preparation of ultra high performance concrete with coral reef sand[J]. Concrete,2020(7):65-69(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.07.015
    [25] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2003(in Chinese).
    [26] BORGES P H, FONSECA L F, NUNES V A, et al. Andreasen particle packing method on the development of geopolymer concrete for civil engineering[J]. Journal of Materials in Civil Engineering,2014,26(4):692-697. doi: 10.1061/(ASCE)MT.1943-5533.0000838
    [27] HMED T, ELCHALAKANI M, KARRECH A, et al. Development of ECO-UHPC with very-low-C3A cement and ground granulated blast-furnace slag[J]. Construction and Building Materials,2021,284:122787. doi: 10.1016/j.conbuildmat.2021.122787
    [28] YU R, SPIESZ P, BROUWERS H. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount[J]. Construction and Building Materials,2014,65:140-150. doi: 10.1016/j.conbuildmat.2014.04.063
    [29] PANE I, HANSEN W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis[J]. Cement and Concrete Research,2005,35(6):1155-1164. doi: 10.1016/j.cemconres.2004.10.027
    [30] GOLEWSKI G L. The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading[J]. Energies,2021,14(3):668. doi: 10.3390/en14030668
    [31] 朱星曈, 耿欧, 朱思远. 废轮胎橡胶混凝土界面过渡区特征试验研究[J]. 硅酸盐通报, 2021, 40(2):573-578.

    ZHU Xingtong, GENG Ou, ZHU Siyuan. Characteristics of interface transition zone of waste tire rubber concrete[J]. Bulletin of the Chinese Ceramic Society,2021,40(2):573-578(in Chinese).
    [32] 郝晓玉, 王卓. 粉煤灰对再生混凝土抗硫酸盐侵蚀及界面过渡区微观性能影响研究[J]. 混凝土, 2021(12):94-96. doi: 10.3969/j.issn.1002-3550.2021.12.020

    HAN Xiaoyu, WANG Zhuo. Effect of fly ash on sulfate erosion resistance of recycled concrete and microscopic properties of interface transition zone[J]. Concrete,2021(12):94-96(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.12.020
    [33] 徐礼华, 余红芸, 池寅, 等. 钢纤维-水泥基界面过渡区纳米力学性能[J]. 硅酸盐学报, 2016, 44(8):1134-1146.

    XU Lihua, YU Hongyun, CHI Yin, et al. Nano-indentation character of interfacial transition zone between steel fiber and cement paste[J]. Journal of the Chinese Ceramic Society,2016,44(8):1134-1146(in Chinese).
    [34] HAN B G, ZHANG L Q, ZENG S Z, et al. Nano-core effect in nano-engineered cementitious composites[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,95:100-109. doi: 10.1016/j.compositesa.2017.01.008
    [35] GARCIA D C, WANG K, FIGUEIREDO R B. The influences of quartz content and water-to-binder ratio on the microstructure and hardness of autoclaved Portland cement pastes[J]. Cement and Concrete Composites,2018,91:138-147. doi: 10.1016/j.cemconcomp.2018.05.010
    [36] LASSEUGUETTE E, BURNS S, SIMMONS D, et al. Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems[J]. Journal of Cleaner Production,2019,211:1228-1238. doi: 10.1016/j.jclepro.2018.11.240
    [37] YU J, LU C, LEUNG C K, et al. Mechanical properties of green structural concrete with ultrahigh-volume fly ash[J]. Construction and Building Materials,2017,147:510-518. doi: 10.1016/j.conbuildmat.2017.04.188
    [38] WU M, ZHANG Y S, JI Y S, et al. Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures[J]. Journal of Cleaner Production,2018,196:358-369. doi: 10.1016/j.jclepro.2018.06.079
    [39] ZHAO Y S, GAO J M, LIU C B, et al. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement[J]. Journal of Cleaner Production,2020,242:118521. doi: 10.1016/j.jclepro.2019.118521
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  384
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-06-12
  • 录用日期:  2022-07-01
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回