留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能

王增豪 马益恒 娄元猛 董璐铭 马海云

王增豪, 马益恒, 娄元猛, 等. 羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能[J]. 复合材料学报, 2023, 40(5): 2699-2708. doi: 10.13801/j.cnki.fhclxb.20220630.004
引用本文: 王增豪, 马益恒, 娄元猛, 等. 羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能[J]. 复合材料学报, 2023, 40(5): 2699-2708. doi: 10.13801/j.cnki.fhclxb.20220630.004
WANG Zenghao, MA Yiheng, LOU Yuanmeng, et al. Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nano flame retardant and its flame retardant properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2699-2708. doi: 10.13801/j.cnki.fhclxb.20220630.004
Citation: WANG Zenghao, MA Yiheng, LOU Yuanmeng, et al. Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nano flame retardant and its flame retardant properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2699-2708. doi: 10.13801/j.cnki.fhclxb.20220630.004

羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能

doi: 10.13801/j.cnki.fhclxb.20220630.004
基金项目: 国家自然科学基金(52173073)
详细信息
    通讯作者:

    马海云,博士,副教授,研究方向为高分子阻燃材料、纳米材料 E-mail: coffee1123@126.com

  • 中图分类号: O631;TB332

Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nano flame retardant and its flame retardant properties

Funds: National Natural Science Foundation of China (52173073)
  • 摘要: 羟基锡酸盐是近些年来人们日益关注的新型阻燃剂。本文从阻燃设计入手,通过化学共沉淀法合成了亚微米级羟基锡酸钙(CSH)立方体,并通过高倍模拟体液法原位快速包覆羟基磷灰石(HA),得到羟基磷灰石包覆的羟基锡酸钙(CSH@HA)复合微纳米阻燃剂,并应用于软质聚氯乙烯(PVC)的阻燃研究。研究结果表明:CSH@HA对PVC展现出优异的阻燃效果。极少量的CSH@HA即能显著提高PVC的极限氧指数(LOI),降低PVC燃烧时的热释放速率、热释放量、烟释放量和CO排放量。CSH@HA在PVC降解过程中通过与HCl反应,保护内层CSH,将PVC转化为更稳定的炭层结构。低填充量CSH@HA还在保持PVC的力学性能的同时提升材料的韧性。本文得到的CSH@HA复合阻燃剂为高效环保阻燃剂的开发提供了思路。

     

  • 图  1  羟基磷灰石/羟基锡酸钙(CSH@HA)杂化微纳米阻燃剂的合成路线

    Figure  1.  Synthetic routes of the hybrid micro-nanoscale hydroxystannate/hydroxyapatite (CSH@HA) flame retardant

    图  2  CSH及CSH@HA的微观形貌、粒径及元素面分布图:((a), (d)) CSH的SEM图像及粒径分布图; ((b), (c), (e)~(g)) CSH@HA的SEM图像、TEM图像、粒径分布、包覆层厚度拟合和元素分布

    Figure  2.  Morphologies, size and element distribution map of CSH and CSH@HA: ((a), (d)) SEM image and size distribution of CSH; ((b), (c), (e)-(g)) SEM image, TEM image, size distribution, coating thickness fitting and element distribution of CSH@HA

    图  3  CSH、HA、CSH@HA的XRD (a)、FTIR (b)及EDS (c)图谱

    Figure  3.  XRD (a), FTIR (b) and EDS (c) spectra of CSH, HA, CSH@HA

    图  4  CSH、HA、CSH@HA的TG (a)和DTG (b)曲线

    Figure  4.  TG (a) and DTG (b) curves of CSH, HA, CSH@HA

    图  5  CSH@HA/PVC复合材料的极限氧指数(LOI) (a)、热释放速率(HRR) (b)、总放热量(THR) (c)、烟释放速率(SPR) (d)、总放烟量(TSP) (e)及质量损失(f)随时间变化曲线

    Figure  5.  Limiting oxygen index (LOI) value (a), heat release rate (HRR) (b), total heat release (THR) (c), smoke production rate (SPR) (d), total smoke release (TSP) (e), and specimen mass residual (f) vs time curves of CSH@HA/PVC composites

    图  6  CSH@HA/PVC及其复合材料的残炭宏观形貌及微观形貌:((a), (d)) PVC;((b), (e)) 5wt%CSH/PVC;((c), (f)) 5wt%CSH@HA/PVC

    Figure  6.  Macro- and micro-morphologies of CSH@HA/PVC composites: ((a), (d)) PVC; ((b), (e)) 5wt%CSH/PVC; ((c), (f)) 5wt%CSH@HA/PVC

    图  7  CSH@HA/PVC及其复合材料残炭XRD (a)、FTIR (b)及能谱(c)图谱

    Figure  7.  XRD (a), FTIR (b) and EDS (c) spectra of CSH@HA/PVC composites

    图  8  CSH@HA对PVC的阻燃机制示意图

    Figure  8.  Flame retardant mechanism illustration of CSH@HA on PVC

    图  9  PVC及其CSH@HA/PVC复合材料的拉伸断面图像: (a) PVC;((b)~(d)) 1wt%CSH@HA/PVC、3wt%CSH@HA/PVC、5wt%CSH@HA/PVC

    Figure  9.  Tensile fracture morphologies of PVC and CSH@HA/PVC composites: (a) PVC; ((b)-(d)) 1wt%CSH@HA/PVC, 3wt%CSH@HA/PVC, 5wt%CSH@HA/PVC

    表  1  CSH@HA/聚氯乙烯(PVC)复合材料配方

    Table  1.   Composition of CSH@HA/polyvinyl chloride (PVC) composite

    Sample CSH@HA/g CSH/g
    PVC 0.00 0.00
    1wt%CSH@HA/PVC 0.52 0.00
    3wt%CSH@HA/PVC 1.57 0.00
    5wt%CSH@HA/PVC 2.61 0.00
    5wt%CSH/PVC 0.00 2.61
    下载: 导出CSV

    表  2  PVC及其复合材料的锥形量热测试数据

    Table  2.   Cone calorimeter data of PVC and its composites

    PHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    TSP/m2Residue/
    wt%
    COP/(g·s−1)LOI/%UL 94
    PVC338.6954.4429.54 4.350.02126.6NR
    1wt%CSH@HA/PVC221.6150.5222.6110.820.01628.3NR
    3wt%CSH@HA/PVC202.0148.7620.2910.610.01529.7V-2
    5wt%CSH@HA/PVC162.0538.5616.3620.040.01333.1V-1
    5wt%CSH/PVC185.5746.7417.8514.580.01532.8V-2
    5wt%HA/PVC250.1148.6224.1415.850.01829.0NR
    5wt%(HA+CSH)/PVC197.7845.9321.5015.230.01630.2V-2
    Notes: PHRR—Peak heat release rate; COP—Carbon monoxide production; UL 94—Vertical burning test; NR—No rating.
    下载: 导出CSV

    表  3  CSH@HA/PVC复合材料的力学性能

    Table  3.   Mechanical properties of CSH@HA/PVC composites

    Tensile
    strength/MPa
    Elongation at
    break/%
    PVC19.28±1.12496.81±15.01
    1wt%CSH@HA/PVC19.75±1.25530.96±14.12
    3wt%CSH@HA/PVC19.62±1.20552.58±18.36
    5wt%CSH@HA/PVC19.34±1.18496.99±20.06
    5wt%CSH/PVC19.88±0.87515.72±16.11
    下载: 导出CSV
  • [1] LEVCHIK S V, WEIL E D. Overview of the recent literature on flame retardancy and smoke suppression in PVC[J]. Polymers for Advanced Technologies,2005,16(10):707-716. doi: 10.1002/pat.645
    [2] PAN Y T, YUAN Y S, WANG D Y, et al. An overview of the flame retardants for poly(vinyl chloride): Current states and perspective[J]. Chinese Journal of Chemistry,2020,38(12):1870-1896. doi: 10.1002/cjoc.202000375
    [3] 尚松川, 杨保俊, 张睿辰, 等. Sb2O3-ZnMgAl类水滑石的制备及其在软聚氯乙烯阻燃中的应用[J]. 复合材料学报, 2017, 34(8):1667-1673.

    SHANG Songchuan, YANG Baojun, ZHANG Ruichen, et al. Preparation of Sb2O3-LDHs and its assisting flame retardant effects on soft polyvinyl chloride[J]. Acta Materiae Compositae Sinica,2017,34(8):1667-1673(in Chinese).
    [4] MEHTA B, KATHALEWAR M, SABNIS A. Diester based on castor oil fatty acid as plasticizer for poly(vinyl chloride)[J]. Journal of Applied Polymer Science,2014,131(11):1-8.
    [5] QU H Q, WU W H, XIE J X, et al. A novel intumescent flame retardant and smoke suppression system for flexible PVC[J]. Polymers for Advanced Technologies,2011,22(7):1174-1181. doi: 10.1002/pat.1934
    [6] GIORGIO Z, SERGIO B, TIZIANA B, et al. Safer plasticized polyvinyl chloride synthetic leathers for the automotive industry: Evaluation of alternatives to antimony compounds as flame retardants[J]. Polymer Engineering and Science,2019,59(12):2488-2497. doi: 10.1002/pen.25121
    [7] NING Y, GUO S Y. Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC[J]. Journal of Applied Polymer Science,2000,77(14):3119-3127. doi: 10.1002/1097-4628(20000929)77:14<3119::AID-APP130>3.0.CO;2-N
    [8] LU Y H, WU C F, XU S A. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape[J]. Composites Part A: Applied Science and Manufacturing,2018,113:1-11. doi: 10.1016/j.compositesa.2018.07.012
    [9] GREEN J. Mechanisms for flame retardancy and smoke suppression—A review[J]. Journal of Fire Sciences,1996,14(6):426-442. doi: 10.1177/073490419601400602
    [10] QU H Q, WU W H, ZHENG Y J, et al. Synergistic effects of inorganic tin compounds and Sb2O3 on thermal properties and flame retardancy of flexible poly(vinyl chloride)[J]. Fire Safety Journal,2011,46(7):462-467. doi: 10.1016/j.firesaf.2011.07.006
    [11] ZHANG B, JIAO Y H, XU J Z. A study on the flame-retardance of poly(vinyl chloride) incorporated with metal hydroxystannates[J]. Journal of Applied Polymer Science,2009,112(1):82-88. doi: 10.1002/app.29404
    [12] ZHANG Z D, LI X L, YUAN Y S, et al. Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxides nanocapsules and its application in flame retardant epoxy nanocomposites[J]. ACS Applied Materials & Interfaces,2019,11(43):40951-40960.
    [13] LONG M Y, PENG S, DENG W S, et al. A robust superhydrophobic PDMS@ZnSn(OH)6 coating with under-oil self-cleaning and flame retardancy[J]. Journal Materials Chemistry A,2017,5(43):22761-22771. doi: 10.1039/C7TA06190K
    [14] WANG B B, SHENG H B, SHI Y Q, et al. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites[J]. Journal of Hazardous Materials,2016,314:260-269. doi: 10.1016/j.jhazmat.2016.04.029
    [15] LI P P, ZHENG Y P, LI M Z, et al. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes[J]. Composites Part A: Applied Science and Manufacturing,2016,81:172-181. doi: 10.1016/j.compositesa.2015.11.013
    [16] 李志伟, 黄永山, 李小红, 等. 一种新型ZHS-MF复合阻燃剂的制备及其在软质PVC中的应用[J]. 复合材料学报, 2013, 30(4):29-34. doi: 10.13801/j.cnki.fhclxb.2013.04.010

    LI Zhiwei, HUANG Yongshan, LI Xiaohong, et al. Preparation of a novel ZHS-MF composite flame retardant and its application in flexible poly(vinyl chloride)[J]. Acta Materiae Compositae Sinica,2013,30(4):29-34(in Chinese). doi: 10.13801/j.cnki.fhclxb.2013.04.010
    [17] HUO Z Y, WU H J, SONG Q G, et al. Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance[J]. Carbohydrate Polymers,2021,256:117575. doi: 10.1016/j.carbpol.2020.117575
    [18] XU W Z, CHEN R, XU J Y, et al. Nickel hydroxide and zinc hydroxystannate dual modified graphite carbon nitride for the flame retardancy and smoke suppression of epoxy resin[J]. Polymer Degradation and Stability,2020,182:109366. doi: 10.1016/j.polymdegradstab.2020.109366
    [19] 张冲, 耿晓维, 高香迪, 等. 环交联聚磷腈包覆羟基锡酸锶杂化纳米棒的合成及阻燃环氧树脂研究[J]. 无机材料学报, 2019, 34(7):761-767. doi: 10.15541/jim20180493

    ZHANG Chong, GENG Xiaowei, GAO Xiangdi, et al. Synthesis of cyclic crosslinked polyphosphazene coated strontium hydroxystannate hybrid nanorods and research on flame retardant epoxy resin[J]. Journal of Inorganic Materials,2019,34(7):761-767(in Chinese). doi: 10.15541/jim20180493
    [20] ZHANG C, GUO X D, MA S M, et al. Strontium hydroxystannate nanorods encapsulated by hybrid polyphosphazene: Synthesis and flame retardancy on epoxy resin[J]. Materials Letters,2018,229:297-300. doi: 10.1016/j.matlet.2018.07.047
    [21] 胡伟东, 赵贺, 焦运红, 等. 羟基锡酸钴在软质聚氯乙烯中的高效阻燃消烟作用[J]. 复合材料学报, 2019, 36(9):2067-2075.

    HU Weidong, ZHAO He, JIAO Yunhong, et al. High efficient flame retardancy and smoke suppression effect of cobalt hydroxystannate on flexible polyvinyl chloride[J]. Acta Materiae Compositae Sinica,2019,36(9):2067-2075(in Chinese).
    [22] 董璐铭, 苏衍跃, 王春征, 等. 微纳米钙钛矿型羟基锡酸钙的合成及对环氧树脂的阻燃性能[J]. 高等学校化学学报, 2021, 42(3):937-945.

    DONG Luming, SU Yanyue, WANG Chunzheng, et al. Synthesis of micro- to nano-scale perovskite calcium hydroxystannate and its performance as a flame retardant in epoxy resin[J]. Chemical Journal of Chinese Universities,2021,42(3):937-945(in Chinese).
    [23] DONG L M, SU Y Y, QIAO Y F, et al. Structure regulation of boron-doped calcium hydroxystannate and its enhancement on flame retardancy and mechanical properties of PVC[J]. Polymers for Advanced Technologies,2021,32(4):1831-1843. doi: 10.1002/pat.5224
    [24] YANG D Q, ZHANG C, DONG L M, et al. Synthesis and properties of SrSn(OH)6 nanorods and their flame retardancy and smoke suppression effects on epoxy resin[J]. Journal of Coatings Technology and Research,2019,16(6):1715-1725. doi: 10.1007/s11998-019-00254-x
    [25] FIUME E, MAGNATERRA G, RAHDAR A, et al. Hydroxyapatite for biomedical applications: A short overview[J]. Ceramics,2021,4(4):542-563. doi: 10.3390/ceramics4040039
    [26] ZHU J D, XIONG R J, ZHAO F X, et al. Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(1): 71-83.
    [27] CHEN F F, ZHU Y J, XIONG Z C, et al. Hydroxyapatite nanowire-based all-weather flexible electrically conduc-tive paper with superhydrophobic and flame-retardant properties[J]. ACS Applied Materials & Interfaces,2017,9(45):39534-39548.
    [28] VAHABI H, SHABANIAN M, ARYANASAB F, et al. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid)[J]. Thermochimica Acta,2018,666:51-59. doi: 10.1016/j.tca.2018.06.004
    [29] DEMIRTAS T T, KAYNAK G, GÜMÜSDERELIOGLU M. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation[J]. Materials Science and Engineering: C,2015,49:713-719. doi: 10.1016/j.msec.2015.01.057
    [30] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics: Determination of burning behaviour by oxygen index Part 2: Ambient temperature test: GB/T 2406.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [31] 中国国家标准化管理委员会. 塑料燃烧性能的测定 水平法和垂直法: GB/T 2408—2008[S].北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [32] ASTM Committee. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.
    [33] SANDESH S, KRISTACHAR P K R, MANJUNATHAN P, et al. Synthesis of biodiesel and acetins by transesterification reactions using novel CaSn(OH)6 heterogeneous base catalyst[J]. Applied Catalysis A: General,2016,523:1-11. doi: 10.1016/j.apcata.2016.05.006
    [34] 陈景帝, 王迎军, 魏坤, 等. 羟基磷灰石的可控制备及其研究[J]. 材料科学与工艺, 2007, 4(4):515-518. doi: 10.3969/j.issn.1005-0299.2007.04.019

    CHEN Jingdi, WANG Yingjun, WEI Kun, et al. Synthesis and characterization of nano hydroxyapatite particles[J]. Materials Science and Technology,2007,4(4):515-518(in Chinese). doi: 10.3969/j.issn.1005-0299.2007.04.019
    [35] 贺梦, 张冲, 郭晓东, 等. 含硫功能聚磷腈微纳米球的合成及其在环氧树脂阻燃中的应用[J]. 复合材料学报, 2019, 36(3):584-591. doi: 10.13801/j.cnki.fhclxb.20180711.001

    HE Meng, ZHANG Chong, GUO Xiaodong, et al. Synthesis of sulfur containing polyphosphazene micro-nano sphere and its application in flame retarded epoxy resin[J]. Acta Materiae Compositae Sinica,2019,36(3):584-591(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180711.001
    [36] HAJIBEYGI M, MALEKI M, SHABANIAN M, et al. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties[J]. Applied Surface Science,2018,439:1163-1179. doi: 10.1016/j.apsusc.2018.01.255
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  932
  • HTML全文浏览量:  687
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-22
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回