留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳纳米材料的肾上腺素电化学传感器研究进展

刘雪茹 金彪 孟龙月

刘雪茹, 金彪, 孟龙月. 基于碳纳米材料的肾上腺素电化学传感器研究进展[J]. 复合材料学报, 2023, 40(3): 1340-1353. doi: 10.13801/j.cnki.fhclxb.20220623.008
引用本文: 刘雪茹, 金彪, 孟龙月. 基于碳纳米材料的肾上腺素电化学传感器研究进展[J]. 复合材料学报, 2023, 40(3): 1340-1353. doi: 10.13801/j.cnki.fhclxb.20220623.008
LIU Xueru, JIN Biao, MENG Longyue. Research progress of adrenaline electrochemical sensors based on carbon nanomaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1340-1353. doi: 10.13801/j.cnki.fhclxb.20220623.008
Citation: LIU Xueru, JIN Biao, MENG Longyue. Research progress of adrenaline electrochemical sensors based on carbon nanomaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1340-1353. doi: 10.13801/j.cnki.fhclxb.20220623.008

基于碳纳米材料的肾上腺素电化学传感器研究进展

doi: 10.13801/j.cnki.fhclxb.20220623.008
基金项目: 国家自然科学基金(22166034;51703192;22064017);吉林省科技厅主题引导项目(YDZJ202201ZYTS542);延边大学创新团队项目
详细信息
    通讯作者:

    金彪,博士,副教授,硕士生导师,研究方向为分析化学 E-mail:jinbiao@ybu.edu.cn

    孟龙月,博士,副教授,博士生导师,研究方向为碳基材料的制备及其电化学传感器研究 E-mail:lymeng@ybu.edu.cn

  • 中图分类号: TB33

Research progress of adrenaline electrochemical sensors based on carbon nanomaterials

Funds: National Natural Science Foundation of China (22166034; 51703192; 22064017); Theme Guidance Project of Jilin Provincial Department of Science and Technology (YDZJ202201ZYTS542); Yanbian University Innovation Tean Project
  • 摘要: 肾上腺素(AD)作为一种神经递质在人体内扮演重要角色,其含量的高低直接影响人体身体健康,因此对AD进行快速检测具有重要的实际意义。其检测方法中电化学方法具有灵敏度高、检测速度快、操作简便的优点,因而构建性能优异的肾上腺素电化学传感器成为研究热点。为提高传感器的电化学性能,碳纳米材料被采纳作为修饰传感器的新型材料而广泛应用,取得了检测限低、灵敏度高并有希望应用于临床检测的巨大进步。本文从碳点、石墨烯、碳纳米颗粒等碳纳米材料出发,分析AD在电极表面的电氧化还原机制,对近年来基于碳纳米材料的肾上腺素电化学传感器制备方法及检测结果进行分类统计,并对今后的检测提出展望,以期获得更有效的肾上腺素电化学传感器。

     

  • 图  1  本文的逻辑框架图

    Figure  1.  Logical framework of this paper

    图  2  肾上腺素在电极表面的电氧化还原机制

    Figure  2.  Electroredox mechanism of adrenaline on electrode surface

    图  3  石墨烯(GR)、氧化石墨烯(GO)、还原氧化石墨烯(RGO)的平面结构图

    Figure  3.  Planar structures of graphene (GR), graphene oxide (GO) and reduced graphene oxide (RGO)

    表  1  基于碳纳米材料的电化学传感器检测肾上腺素的性能比较

    Table  1.   Performance comparison of electrochemical sensors based on carbon nanomaterials for the detection of adrenaline

    Carbon nanocompositesDetection discharge
    method
    Linearity
    range/(mol·L−1)
    Limit of
    detection/(mol·L−1)
    Practical
    sample
    Ref.
    GCE/CQDsDPV5×10−5−2×10−46.1×10−6Human urine[31]
    GQD-CS/CPESWV3.6×10−7−3.8×10−40.3×10−6Blood serum[32]
    CQDs/CPECA0.2×10−7−2.0×10−50.6×10−8[33]
    GCE/GQDs/LacCV1.0×10−6−1.2×10−48.3×10−8AD injection[34]
    MIP/g-C3N4/NCQDs/GCEDPV0.1×10−8−1.0×10−60.3×10−9Human urine[35]
    GNRs/GCEDPV6.4×10−6−1.0×10−42.1×10−6Medicine[38]
    GR/BDDLSV1×10−6−1×10−51.44×10−6[39]
    GR/Au/GCECV5×10−5−8×10−47.0×10−6[40]
    PBCB/GR/GCECV1×10−6−1×10−30.24×10−6[41]
    GR/CHIT/Bi2O3/GCEDPV0.1×10−6−0.5×10−63.56×10−9[42]
    GO/GCDPV1×10−6−1×10−4(0.50±0.01)×10−6[50]
    GO/CPEDPV0.1×10−6−2.0×10−30.05×10−6[51]
    EDDPT/GO/CPEDPV1.5×10−6−6.0×10−40.65×10−6Drug sample[52]
    MGO/AuNPs/CPEDPV0.1×10−7−0.5×10−60.5×10−8Human urine/blood[53]
    RGO/GCEDPV1.5×10−8−4.0×10−50.3×10−8Human urine[56]
    RGO/TiO2/GCEDPV5×10−6−1×10−31.4×10−6Medicine[57]
    NiO-RGO/GCECV5×10−5−1×10−31.01×10−4Human biology fluid[82]
    RGO/Pd/GCEDPV1×10−6−1×10−50.3×10−7[83]
    MXene/N-rGODPV0.1×10−7−9.0×10−50.3×10−8Human urine[60]
    DH–CN/CPEDPV5×10−6−6×10−41.0×10−6[64]
    Nafion-OMC/GCIt0.1×10−6−1.2×10−33.5×10−8[74]
    OMC-NiO/GCECV, DPV0.8×10−6−5.0×10−58.5×10−8Human serum/AD injection[75]
    MWCNT/CFECV1×10−6−2×10−43.4×10−6[78]
    DOPA-MWCNT-GCEDPV2.0×10−6−4.6×10−56.2×10−7[79]
    MgO-MWCNTs-MCPECV1×10−5−8×10−58.3×10−7[80]
    IL/CNTPEDPV1.0×10−6−3.5×10−41.0×10−6Serum/tablet/urine[82]
    MIP/PIL-MWNTs/ITOCV0-0.2×10−60.6×10−9[83]
    POXMCNTPEDPV1.0×10−5−1.1×10−43.1×10−8Ampoule[84]
    pyrolytic-CNTDPV1.6×10−7−8.0×10−56.5×10−7[85]
    Notes: GCE—Glassy carbon electrode; CQDs—carbon quantum dots; GQD—Graphene quantum dot; CPE—Carbon paper microelectrode; Lac—Laccase; GNR—Graphene nanoribbon; BDD—Boron-doped diamond; PBCB—Poly-cresol blue; MGO—Molecularly imprinted polymer-graphene oxide; DH—Hydroquinone derivatives; MWCNT—Multiwalled carbon nanotube; CFE—Carbon fiber microelectrode; DOPA—Levodopa; IL—Ionic liquid; MCPE—Carbon paste electrode; CNTPE—Carbon nanotube paste electrode; ITO—Indium tin oxide; MIP—Molecularly imprinted polymer; PIL—Polymeric ionic liquid; POXMCNTPE—Polyoxalic acid modified carbon nanotube paste electrode; CV—Cyclic voltammetry; DPV—Differential pulse voltammetry; LSV—Linear sweep voltammetry.
    下载: 导出CSV
  • [1] LI J B, WANG X J, DUAN H M, et al. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites[J]. Materials Science and Engineering: C,2016,64:391-398. doi: 10.1016/j.msec.2016.04.003
    [2] REDDY K K, SATYANARAYANA M, GOUD K Y, et al. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine[J]. Materials Science and Engineering: C,2017,79:93-99. doi: 10.1016/j.msec.2017.05.012
    [3] ZHENG J W, YANG Y, TIAN S H, et al. The dynamics of hippocampal sensory gating during the development of morphine dependence and withdrawal in rats[J]. Neuroscience Letters,2005,382:164-168. doi: 10.1016/j.neulet.2005.03.010
    [4] NAKAO N, ITAKURA T. Fetal tissue transplants in animal models of Huntington's disease: The effects on damaged neuronal circuitry and behavioral deficits[J]. Progress in Neurobiology,2000,61:313-338. doi: 10.1016/S0301-0082(99)00058-1
    [5] MO J W, OGOR B B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1, 2-phenylenediamine) -coated carbon fiber[J]. Analytical Chemistry,2001,73:1196-1202. doi: 10.1021/ac0010882
    [6] HEMME W J. A review of epinephrine administration in pediatric anaphylaxis[J]. Journal of Emergency Nursing,2012,38:392. doi: 10.1016/j.jen.2011.12.012
    [7] RAZAVIAN A S, GHOREISHI S M, ESMAEILY A S, et al. Simultaneous sensing of L-tyrosine and epinephrine using a glassy carbon electrode modified with nafion and CeO2 nanoparticles[J]. Microchim Acta,2014,181:1947-1955. doi: 10.1007/s00604-014-1284-8
    [8] MATTIOLI I A, CERVINI P, CAVALHEIRO É T G. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: A comparative study[J]. Microchim Acta,2020,187:318. doi: 10.1007/s00604-020-04259-x
    [9] ALAYASH A S, MUHAMAD Y H, GHAFOURI S A. Spectrophotometric determination of epinephrine in pharmaceutical preparations using praseodymium as mediating metals[J]. Baghdad Science Journal,2010,8(1):110-117.
    [10] BERGMANN M L, SADJADI S, SCHMEDES A. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,2017,1057:118-123. doi: 10.1016/j.jchromb.2017.04.011
    [11] WOO H I, YANG J S, OH H J, et al. A simple and rapid analytical method based on solid-phase extraction and liquid chromatography - tandem mass spectrometry for the simultaneous determination of free catecholamines and metanephrines in urine and its application to routine clinical analysis[J]. Clinical Biochem,2016,49:579-585.
    [12] ZHAO Y S, ZHAO S L, HUANG J M, et al. Quantum dot-enhanced chemilumine-scence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J]. Talanta,2011,85:2650-2654. doi: 10.1016/j.talanta.2011.08.032
    [13] ZHENG R J, ZHAO C H, ZHONG J H, et al. Determination of epinephrine using a novel sensitive electrochemiluminescence sensor based on ZnO nanoparticles modified pencil graphite electrode[J]. International Journal of Electrochem Science,2019,14:9380.
    [14] ZHANG C C, DU X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease[J]. Frontiers in Chemistry,2020,8:651. doi: 10.3389/fchem.2020.00651
    [15] BANERJEE S, MECARCKEN S, HOSSAIN M F, et al. Electrochemical detection of neurotransmitters[J]. Biosensors,2020,10:101. doi: 10.3390/bios10080101
    [16] GUO L L, QIN L J, XU B, et al. Deciphering electron-shuttling characteristics of epinephrine and dopamine for bioenergy extraction using microbial fuel cells[J]. Biochemical Engineering Journal,2019,148:57-64. doi: 10.1016/j.bej.2019.04.018
    [17] NAM K T , PARK S. Electrochemical cell in the brain[J]. Analytical Chemistry, 2020, 15: 625-626.
    [18] CHEN S M, PENG K Z. The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt (II) hexacyanoferrate films[J]. Journal of Electroanalytical Chemistry,2003,547:179-189. doi: 10.1016/S0022-0728(03)00220-1
    [19] HAWLEY M D, TATAWAWADI S V, PIEKARSKI S, et al. Electrochemical studies of the oxidation pathways of catecholamines[J]. Journal of the American Chemical Society,1967,89:447. doi: 10.1021/ja00978a051
    [20] FIKE R R, CURRAN D J. Determination of catecholamines by thin-layer linear sweep voltammetry[J]. Analytical Chemistry,1977,49:1205. doi: 10.1021/ac50016a037
    [21] CIOLKOWSKI E L, MANESS K M, CAHILL P S, et al. Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes[J]. Analytical Chemistry,1994,66:3611-3617. doi: 10.1021/ac00093a013
    [22] LIN J X, LU H, DUAN Y C, et al. Fabrication of bimetallic ZIF/carbon nanofibers composite for electrochemical sensing of adrenaline[J]. Journal of Materials Science,2022,57:6629-6639. doi: 10.1007/s10853-021-06766-5
    [23] ŁUCZAK T. Gold electrodes modified with self-assembled layers made of sulphur compounds and gold nanoparticles used for selective electrocatalytic oxidation of catecholamine in the presence of interfering ascorbic and uric acids[J]. International Journal of Electrochemistry,2011,2011:179474.
    [24] AMATORE C, SAVEANT J M, TESSIER D. Charge transfer at partially blocked surfaces: a model for the case of microscopic active and inactive sites[J]. Journal of Electroanalytical Chemistry,1983,147:39-51. doi: 10.1016/S0022-0728(83)80054-0
    [25] ZHENG L Z, WU S G, LIN X Q, et al. Electrochemical characterization of poly(N-acetylaniline)/Nafion composite film in neutral and basic aqueous solutions[J]. Electroanalysis,2003,15(3):191-195. doi: 10.1002/elan.200390023
    [26] WANG H S, HUANG D Q, LIU R M. Study on the electrochemical behavior of epinephrine at a poly (3-methylthiophene)-modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry,2004,570:83-90. doi: 10.1016/j.jelechem.2004.03.019
    [27] CHEN S M, CHEN J Y, VASANTHA V S. Electrochemical preparation of epinephrine/Nafion chemically modified electrodes and their electrocatalytic oxidation of ascorbic acid and dopamine[J]. Electrochimica Acta,2006,52:455-465. doi: 10.1016/j.electacta.2006.05.027
    [28] BACIL R P, GARCIA P H M, SERRANO S H P. New insights on the electrochemical mechanism of epinephrine on glassy carbon electrode[J]. Journal of Electroanalytical Chemistry,2022,908:116111. doi: 10.1016/j.jelechem.2022.116111
    [29] KOUR R, ARYA S, YOUNA S J, et al. Review—Recent advances in carbon nanomaterials as electrochemical biosensors[J]. Journal of The Electrochemical Society,2020,167:037555. doi: 10.1149/1945-7111/ab6bc4
    [30] DING C, ZHU A, TIAN Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research,2014,47:20-30. doi: 10.1021/ar400023s
    [31] CANEVARI T C, NAKAMURA M, CINCOTTO F H. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions[J]. Electrochimica Acta,2016,209:464-470. doi: 10.1016/j.electacta.2016.05.108
    [32] TASHKHOURIAN J, NAMIAMA S F, SHAMSIPUR M. Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine[J]. Journal of Molecular Liquids,2018,266:548-556. doi: 10.1016/j.molliq.2018.06.093
    [33] SHANKAR S S, SHEREEMA R M, RAMACHANDRAN V, et al. Carbon quantum dot-modified carbon paste electrode-based sensor for selective and sensitive determination of adrenaline[J]. ACS Omega,2019,4:7903-7910. doi: 10.1021/acsomega.9b00230
    [34] BALUTA S, LESIAK A, CABAJ J. Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection[J]. Electroanalysis,2018,30:1-11. doi: 10.1002/elan.201880101
    [35] YOLA M L, ATAR N. Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine[J]. Composites Part B: Engineering,2019,175:107113. doi: 10.1016/j.compositesb.2019.107113
    [36] YANG W, RATINAC K R, RINGER S P, et al. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene?[J]. Angewandte Chemie International Edition,2010,49(12):2114-2138. doi: 10.1002/anie.200903463
    [37] STANKOVICH S, PINER R D, CHEN X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16:155-158. doi: 10.1039/B512799H
    [38] SAINZ R, DELPOZO M, VILAS V M, et al. Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: Determination of epinephrine[J]. Scientific Reports,2020,10:14614. doi: 10.1038/s41598-020-71554-1
    [39] MARCU M, SPATARU T, CALDERONMORENO J M, et al. Anodic voltammetry of epinephrine at graphene-modified conductive diamond electrodes and its analytical application[J]. Journal of the Electrochemical Society,2018,165(11):523-529. doi: 10.1149/2.1321811jes
    [40] CUI F, ZHANG X L. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites[J]. Journal of Electroanalytical Chemistry,2012,669:35-41. doi: 10.1016/j.jelechem.2012.01.021
    [41] DING M, ZHOU Y M, LIANG X Z, et al. An electrochemical sensor based on graphene/poly (brilliant cresyl blue) nanocomposite for determination of epinephrine[J]. Journal of Electroanalytical Chemistry,2016,763:25-31. doi: 10.1016/j.jelechem.2015.12.040
    [42] DEVNANI H, SATSANGEE S P, JAIN R. A novel graphene-chitosan-Bi2O3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine[J]. Ionics,2016,22:943-956. doi: 10.1007/s11581-015-1620-y
    [43] MCCREERY R L. Advanced carbon electrode materials for molecular electrochemistry[J]. Chemical Reviews,2008,108:2646-2687. doi: 10.1021/cr068076m
    [44] AMBROSI A, BONANNI A, SOFER Z, et al. Electrochemistry at chemically modified graphenes[J]. Chemistry a European Journal,2011,17:10763-10770. doi: 10.1002/chem.201101117
    [45] BONANNI A, AMBROSI A, PUMERA M. Nucleic acid functionalized graphene for biosensing[J]. Chemistry a European Journal,2012,18(6):1668-1673. doi: 10.1002/chem.201102850
    [46] POPE M A, PUNCKT C, AKSAY I A. Intrinsic capacitance and redox activity of functionalized graphene sheets[J]. The Journal of Physical Chemistry C,2011,115(41):20326-20334. doi: 10.1021/jp2068667
    [47] JOSHI R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide: The new membrane material[J]. Applied Materialstoday,2015,1(1):1-12.
    [48] MUTI M, SHARMA S, ERDEM A, et al. Electrochemical monitoring of nucleic acid hybridization by single-use graphene oxide-based sensor[J]. Electroanalysis,2011,23:272-279. doi: 10.1002/elan.201000425
    [49] BROWMSON D A C, SMISH G C, BANKS C E. Graphene oxide electrochemistry: The electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis[J]. Society Open Science,2017,4(11):2054-5703.
    [50] SADHANA R, ABRAHAM P, VIADHARAN A. Solar exfoliated graphene oxide: A platform for electrochemical sensing of epinephrine[J]. Current Analytical Chemistry,2020,16:393-403. doi: 10.2174/1573411015666190104110928
    [51] TEZERANI M D, BENVIDI A, FIROUZABADI A D, et al. Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine[J]. Measurement,2017,101:183-189. doi: 10.1016/j.measurement.2017.01.029
    [52] JOSEPH T, THOMAS T, THOMAS N. Graphene oxide modified carbon paste electrode for handy and ultra-sensitive determination of epinephrine in the presence of uric and ascorbic acids[J]. Electroanalysis,2020,32(11):2463-2473. doi: 10.1002/elan.202060085
    [53] MARDANI L, VARDINI M T, ESHAGHI M, et al. Preparation of molecularly imprinted-grafted magnetic graphen oxide-gold nanocomposite and its application to design electrochemical sensor for determination of epinephrine[J]. Analytical Sciences,2019,35(11):1173-1182. doi: 10.2116/analsci.19P107
    [54] LIU D, LONG Y T. Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction[J]. ACS Applied Materials & Interfaces,2015,7:24063-24068.
    [55] BAI J, HONG W J, BAI H. Electrochemically reduced graphene oxide: Preparation, composites, and applications[J]. Carbon,2022,191:301-332. doi: 10.1016/j.carbon.2022.01.056
    [56] ZAIDI S A. Utilization of an environmentally-friendly monomer for an efficient and sustainable adrenaline imprinted electrochemical sensor using graphene[J]. Electrochimica Acta,2018,274(1):370-377.
    [57] GHANBARI K, GHORBANI F, BONYADI S. Simultaneous electroanalytical sensing of dopamine and epinephrine using TiO2/reduced graphene oxide nanocomposite modified glassy carbon electrode[J]. Nanochemistry Research,2021,6(2):223-238.
    [58] RAMU A G, UMAR A, IBRAHIM A A, et al. Synthesis of porous 2D layered nickel oxide-reduced graphene oxide (NiO-rGO) hybrid composite for the efficient electrochemical detection of epinephrine in biological fluid[J]. Environmental Research,2021,200:111366. doi: 10.1016/j.envres.2021.111366
    [59] RENJINI S, ABRAHAM P, KUMAR T J, et al. Graphene oxide supported palladium nanoparticle as an electrochemical sensor for epinephrine[J]. AIP Conference Proceedings,2019,2162:020071.
    [60] CHEN S X, SHI M, XU Q, et al. Ti3C2Tx MXene/nitrogen-doped reduced graphene oxide composite: A high-performance electrochemical sensing platform for adrenaline detection[J]. Nanotechnology,2021,32:265501. doi: 10.1088/1361-6528/abef94
    [61] ZHAO A D, CHEN Z W, ZHAO C Q, et al. Recent advances in bioapplications of C-dots[J]. Carbon,2015,85:309-327. doi: 10.1016/j.carbon.2014.12.045
    [62] SZOT K, OPALLO M. (Bio) electroanalytical applications of carbon nanoparticles[J]. Electroanalysis,2016,28:46-57. doi: 10.1002/elan.201500478
    [63] ASADIAN E, GHALKHANI M, SHAHROKHIAN S. Electrochemical sensing based on carbon nanoparticles: A review[J]. Sensors & Actuators B: Chemical,2019,293:183-209.
    [64] MAZLOUM A M, RAJABZADEH N. Carbon nanoparticles and a new derivative of hydroquinone for modification of a carbon paste electrode for simultaneous determination of epinephrine and acetaminophen[J]. Analytical Methods,2012,4:2127-2133. doi: 10.1039/c2ay25063b
    [65] NDAMANISHA J C, GUO L. Ordered mesoporous carbon for electrochemical sensing: A review[J]. Analytica Chi-mica Acta,2012,747(17):19-28.
    [66] JOO S H, CHOI S J, OH I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412:169. doi: 10.1038/35084046
    [67] JIA N, WANG Z, YANG G, et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238. doi: 10.1016/j.elecom.2006.08.050
    [68] HARTMANN M. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chemistry of Materials,2005,17(18):4577-4593. doi: 10.1021/cm0485658
    [69] CHOI M, RYOO R. Ordered nanoporous polymer-carbon composites[J]. Nature Materials,2003,2:473-476. doi: 10.1038/nmat923
    [70] WALCARIUS A. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials[J]. Comptes Rendus Chimie,2005,8:693-712. doi: 10.1016/j.crci.2004.10.003
    [71] BANKS C E, COMPTON R G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study[J]. Analyst,2005,130:1232-1239. doi: 10.1039/b508702c
    [72] WALCARIUS A, MANDLER D, COX J A, et al. Exciting new directions in the intersection of functionalized solgel materials with electrochemistry[J]. Journal of Materials Chemistry,2005,15:3663-3689. doi: 10.1039/b504839g
    [73] WALCARIUS A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes[J]. Trends in Analytical Chemistry,2012,38:79-97. doi: 10.1016/j.trac.2012.05.003
    [74] ZHOU M, GUO L P, HOU Y, et al. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine[J]. Electrochimica Acta,2008,53:4176-4184. doi: 10.1016/j.electacta.2007.12.077
    [75] YANG X, ZHAO P C, XIE Z G, et al. Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon/nickel oxide nanocomposite[J]. Talanta,2021,233:122545. doi: 10.1016/j.talanta.2021.122545
    [76] AHAMMAD A J, LEE J J, RAHMAN M. Electrochemical sensors based on carbon nanotubes[J]. Sensors,2009,9(4):2289-2319. doi: 10.3390/s90402289
    [77] CHO G, AZZOUZI S, ZUCCHI G, et al. Electrical and electrochemical sensors based on carbon nanotubes for the monitoring of chemicals in water-a review[J]. Sensors,2021,22(1):218. doi: 10.3390/s22010218
    [78] GHICA M E, BRETT C M A. Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes[J]. Analytical Letters,2013,46(9):1379-1393. doi: 10.1080/00032719.2012.762584
    [79] ZARE H R, MORADIYAN B, SHEKARI Z, et al. Application of L-DOPA modified carbon nanotubes as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen and tyrosine[J]. Measurement,2016,90:510-518. doi: 10.1016/j.measurement.2016.05.024
    [80] CHETANKUMAR K, SWAMY B E K, NAIK H S B. MgO and MWCNTs amplified electrochemical sensor for guanine, adenine and epinephrine[J]. Materials Chemistry and Physics,2021,267:124610. doi: 10.1016/j.matchemphys.2021.124610
    [81] PANDURANGACHAR M, SWAMY B E K. Electro-chemical deposition of 1-butyl-4- methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid[J]. Journal of Molecular Liquids,2010,158(1):13-17.
    [82] TAVANA T, KHALILZADEH M A, KARIMI M H, et al. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode[J]. Journal of Molecular Liquids,2012,168:69-74. doi: 10.1016/j.molliq.2012.01.009
    [83] WU Y, FENG X, ZHOU S H, et al. Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid[J]. Microchim Acta,2013,180:1325-1332. doi: 10.1007/s00604-013-1063-y
    [84] CHAROTHRA M M, MANJUNATHA J G. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode[J]. Materials Chemistry and Physics,2021,262(1):124293.
    [85] KHOT G, KABOLI M, CELIKEL T, et al. Electrochemical detection of adrenaline and hydrogen peroxide on carbon nanotube electrodes[J]. Surface Innovation,2021,8(24):457-486.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  866
  • HTML全文浏览量:  410
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-30
  • 录用日期:  2022-06-20
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回