基于核磁共振技术的玄武岩-聚丙烯混杂纤维增强混凝土孔隙特征分析

黄观送, 苏丽, 薛翠真, 朱翔琛, 付勇, 叶付凯, 乔宏霞

黄观送, 苏丽, 薛翠真, 等. 基于核磁共振技术的玄武岩-聚丙烯混杂纤维增强混凝土孔隙特征分析[J]. 复合材料学报, 2025, 42(2): 1034-1048. DOI: 10.13801/j.cnki.fhclxb.20240520.002
引用本文: 黄观送, 苏丽, 薛翠真, 等. 基于核磁共振技术的玄武岩-聚丙烯混杂纤维增强混凝土孔隙特征分析[J]. 复合材料学报, 2025, 42(2): 1034-1048. DOI: 10.13801/j.cnki.fhclxb.20240520.002
HUANG Guansong, SU Li, XUE Cuizhen, et al. Analysis on pore characteristics of hybrid basalt-polypropylene fiber-reinforced concrete based on nuclear magnetic resonance technology[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 1034-1048. DOI: 10.13801/j.cnki.fhclxb.20240520.002
Citation: HUANG Guansong, SU Li, XUE Cuizhen, et al. Analysis on pore characteristics of hybrid basalt-polypropylene fiber-reinforced concrete based on nuclear magnetic resonance technology[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 1034-1048. DOI: 10.13801/j.cnki.fhclxb.20240520.002

基于核磁共振技术的玄武岩-聚丙烯混杂纤维增强混凝土孔隙特征分析

基金项目: 国家自然科学基金(U21A20150);甘肃省青年科学基金(23JRRA824);甘肃省科技计划(23JRRA813)
详细信息
    通讯作者:

    苏丽,博士,副教授,硕士生导师,研究方向为混凝土耐久性 E-mail: suli_0527@163.com

  • 中图分类号: TU528.1;TB332

Analysis on pore characteristics of hybrid basalt-polypropylene fiber-reinforced concrete based on nuclear magnetic resonance technology

Funds: National Natural Science Foundation of China (U21A20150); Youth Science and Technology Foundation of Gansu Province (23JRRA824); Gansu Provincial Science and Technology Programme Grants (23JRRA813)
  • 摘要:

    采用核磁共振(Nuclear magnetic resonance,NMR)测试了玄武岩-聚丙烯混杂纤维混凝土(HBPRC)的孔隙特征,对比分析了玄武岩纤维(BF)和聚丙烯纤维(PF)及二者混杂对HBPRC的抗压强度、孔隙率、孔径分布和曲折度的影响,并基于核磁共振T2谱和孔隙结构分形理论对4个孔径区域的孔隙结构分形维数进行了量化。结果表明:随着BF的添加,T2谱反映出适量的BF可以减小混凝土的孔隙率,而且有利于减小大孔体积占比;而随着PF含量增加,T2谱面积增加,且混凝土内部孔隙有变大的趋势。掺入BF-PF混杂纤维对混凝土的孔隙特征会产生正协同作用,当BF和PF掺量均为0.05vol%时,协同作用最佳,与普通混凝土相比,抗压强度提高了3.52%、孔隙率降低了1.47%、曲折度提高了8.20%。凝胶孔体积占比增大了8.76%,大孔体积占比降低了5.30%,孔径分布得到优化。HBPRC的孔隙结构具有明显的分形特征,孔隙结构分形维数在过渡孔、毛细孔和大孔区域依次增加,此外,分形维数越大,抗压强度越大。通过微观分析认为,纤维在混凝土基体中的粘结状态和分布是影响HBPRC孔隙分形特征的主要原因。

     

    Abstract:

    The pore characteristics of hybrid basalt-polypropylene fiber-reinforced concrete (HBPRC) was tested by nuclear magnetic resonance (NMR). The effects of basalt fiber (BF) and polypropylene fiber (PF) as well as their blends on the compressive strength, porosity, pore size distribution and tortuosity of HBPRC were analyzed comparatively. The fractal dimensions of the pore structure in four pore-size regions were quantified based on the T2 spectra of NMR and pore structure fractal theory. The results show that with the addition of BF, the T2 spectrum reflects that the appropriate amount of BF can reduce the porosity of concrete, and it is beneficial to reduce the percentage of large pore volume. But as the PF content increases, the T2 spectral area increases and there is a tendency for the pores of the concrete to become larger. Incorporation of BF-PF hybrid fibers produces a positive synergistic effect on the pore characteristics of concrete. The synergistic effect is optimal when the dosage of both BF and PF is 0.05vol%, which improves the compressive strength by 3.52%, reduces the porosity by 1.47%, increases the volume percentage of gel pores by 8.76%, increases the tortuosity by 8.20%, and reduces the volume percentage of large pores by 5.30%, and optimizes the distribution of pore size, as compared with ordinary concrete. There are obvious fractal characteristics in the pore structure of HBPRC, and the fractal dimensions of the pore structure of HBPRC increases sequentially in the region of transition pores, capillary pores, and large pores. In addition, the larger the fractal dimension, the greater the compressive strength. It is concluded from the microscopic analysis that the bonding state and distribution of fibers in the concrete matrix are the main reasons affecting the pore fractal characteristics of HBPRC.

     

  • 图  1   BF和PF外观形貌

    Figure  1.   Morphology of BF and PF

    图  2   MesoMR12-060H-I 岩石微观孔隙结构分析与成像系统

    Figure  2.   MesoMR12-060H-I rock microscopic pore structure analysis and imaging system

    图  3   核磁共振试验样品制备

    Figure  3.   Preparation of the NMR samples

    图  4   抗压试件破坏形态

    Figure  4.   Failure modes of compression specimens

    图  5   28 d HBPRC抗压强度

    Figure  5.   Compressive strength test results of 28 d HBPRC

    图  6   (a) PF断裂形貌;(b) 纤维搭接;(c) BF-PF三维纤维网

    Figure  6.   (a) PF fracture morphology; (b) Fibers overlap; (c) Three-dimensional bearing fiber mesh of BF-PF

    图  7   单掺BF试件横向弛豫时间分布

    Figure  7.   Transverse relaxation-time distribution of single doped BF specimen

    图  8   单掺PF试件弛豫时间分布

    Figure  8.   Transverse relaxation-time distribution of single doped PF specimen

    图  9   HBPRC横向弛豫时间分布

    Figure  9.   Transverse relaxation-time distribution of HBPRC

    图  10   HBPRC的孔隙率

    Figure  10.   Porosity of HBPRC

    图  11   HBPRC的孔径分布

    Figure  11.   Pore size distribution of HBPRC

    图  12   HBPRC的曲折度

    Figure  12.   Tortuosity of HBPRC

    图  13   HBPRC横向弛豫时间与分形特征的关系

    Sv—Cumulative pore volume fraction; T2—Transverse relaxation time

    Figure  13.   Relationship between transverse relaxation time and fractal characteristics of HBPRC

    图  14   不同孔隙的HBPRC的孔隙结构分形维数

    Figure  14.   Fractal dimension of pore structure of HBPRC with different pores

    图  15   纤维与混凝土基体粘结

    ITZ—Interfacial transition zone; CH—Ca(OH)2

    Figure  15.   Bonding between fibers and concrete matrix

    图  16   纤维在HBPRC中的分布

    Figure  16.   Distribution of fibers in HBPRC

    图  17   HBPRC抗压强度与孔隙结构分形维数的关系

    R2—Goodness of fit

    Figure  17.   Relationship between compressive strength and fractal dimension of pore structure of HBPRC

    表  1   胶凝材料和玄武岩纤维(BF)的化学组成(wt%)

    Table  1   Chemical composition of cementitious materials and basalt fiber (BF) (wt%)

    Composition SiO2 Al2O3 Fe2O3 CaO MgO
    Cement 34.67 7.90 2.93 35.50 1.77
    Fly ash 50.77 22.68 5.64 5.98 1.74
    BF 51.40 15.40 9.80 9.00 5.70
    下载: 导出CSV

    表  2   BF和聚丙烯纤维(PF)的物理力学性能

    Table  2   Physical and mechanical of BF and polypropylene fiber (PF)

    Type Density/(kg·m−3) Tensile strength/MPa Elastic modulus/GPa Diameter/μm Length/mm
    BF 2.65 2400 ≥40 15 18
    PF 0.91 270 0.3 30 19
    下载: 导出CSV

    表  3   玄武岩-聚丙烯混杂纤维混凝土(HBPRC)配合比

    Table  3   Mix proportions of hybrid basalt-polypropylene fiber-reinforced concrete (HBPRC)

    Mixture Mixture composition/(kg·m−3)
    C W CA S FA PBS BF PF
    BF0PF0 320 160 1068 712 100 6.3 0 0
    BF0.05PF0 320 160 1068 712 100 6.3 1.3 0
    BF0.1PF0 320 160 1068 712 100 6.3 2.6 0
    BF0PF0.05 320 160 1068 712 100 6.3 0 0.5
    BF0PF0.1 320 160 1068 712 100 6.3 0 0.9
    BF0.05PF0.05 320 160 1068 712 100 6.3 1.3 0.5
    BF0.1PF0.05 320 160 1068 712 100 6.3 2.6 0.5
    BF0.05PF0.1 320 160 1068 712 100 6.3 1.3 0.9
    BF0.1PF0.1 320 160 1068 712 100 6.3 2.6 0.9
    Notes: "C" refers to cement; "W" refers to water; "CA" refers to coarse aggregate; "S" refers to river sand; "FA" refers to fly ash; "PBS" refers to performance water reducer; "0", "0.05", "0.1" represent the fiber volume content of 0vol%, 0.05vol%, 0.1vol%, respectively.
    下载: 导出CSV

    表  4   HBPRC的横向弛豫T2谱峰面积比例

    Table  4   Transverse relaxation-time T2 spectral peak area percentage of HBPRC

    Mixture Peak 1/% Peak 2/% Peak 3/% Peak 4/%
    BF0PF0 62.60 13.91 10.18 13.28
    BF0.05PF0 72.54 11.55 8.70 7.19
    BF0.1PF0 61.79 13.66 10.07 14.46
    BF0PF0.05 51.43 13.69 12.42 22.44
    BF0PF0.1 56.05 13.77 10.25 19.92
    BF0.05PF0.05 69.48 12.72 10.97 6.81
    BF0.1PF0.05 64.08 13.52 9.44 12.94
    BF0.05PF0.1 55.91 15.72 10.96 17.39
    BF0.1PF0.1 65.80 14.44 12.14 7.60
    下载: 导出CSV
  • [1]

    LEE J H, CHO B, CHOI E. Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content[J]. Construction and Building Materials, 2017, 138: 222-231. DOI: 10.1016/j.conbuildmat.2017.01.096

    [2]

    DIAMOND S. Aspects of concrete porosity revisited[J]. Cement and Concrete Research, 1999, 29(8): 1181-1188. DOI: 10.1016/S0008-8846(99)00122-2

    [3] 黄东明, 宗帅, 刘真真, 等. PVA纤维地聚合物再生混凝土轴拉性能研究[J]. 内蒙古工业大学学报(自然科学版), 2023, 42(3): 265-272.

    HUANG Dongming, ZONG Shuai, LIU Zhenzhen, et al. Axial tensile properties of PVA fiber reinforced recycled geopolymer concrete[J]. Journal of Inner Mongolia University of Technology, 2023, 42(3): 265-272(in Chinese).

    [4]

    SIDDIKA A, AL MAMUN M A, ALYOUSEF R, et al. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review[J]. Journal of Building Engineering, 2019, 25: 100798. DOI: 10.1016/j.jobe.2019.100798

    [5]

    ZHANG J, BIAN F, ZHANG Y, et al. Effect of pore structures on gas permeability and chloride diffusivity of concrete[J]. Construction and Building Materials, 2018, 163: 402-413. DOI: 10.1016/j.conbuildmat.2017.12.111

    [6]

    JIANG C, FAN K, WU F, et al. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete[J]. Materials & Design, 2014, 58: 187-193.

    [7] 孙伟, 钱红萍, 陈惠苏. 纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J]. 硅酸盐学报, 2000(2): 95-99, 104. DOI: 10.3321/j.issn:0454-5648.2000.02.001

    SUN Wei, QIAN Hongping, CHEN Huisu. The effect of the combination of hybrid fibers and expansive agent on the physical properties of cementitious composities[J]. Chinese Journal of Ceramics, 2000(2): 95-99, 104(in Chinese). DOI: 10.3321/j.issn:0454-5648.2000.02.001

    [8] 刘洋. 纤维对筋材与自密实混凝土的粘结性能的影响[D]. 大连: 大连理工大学, 2010.

    LIU Yang. Fiber effect on bond behaviour between bars and self-compacting concrete matrix[D]. Dalian: Dalian University of Technology, 2010(in Chinese).

    [9] 张兰芳, 尹玉龙, 刘晶伟, 等. 玄武岩纤维增强混凝土力学性能的研究[J]. 硅酸盐通报, 2014, 33(11): 2834-2837.

    ZHANG Lanfang, YIN Yulong, LIU Jingwei, et al. Mechanical properties study on basalt fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11): 2834-2837(in Chinese).

    [10] 王嘉旋. 高性能纤维喷射混凝土力学性能试验研究[D]. 北京: 北京交通大学, 2021.

    WANG Jiaxuan. Experimental study on mechanical properties of high performance fiber reinforced shotcrete[D]. Beijing: Beijing Jiaotong University, 2021(in Chinese).

    [11] 翟荃. 玄武岩-聚丙烯纤维陶粒混凝土力学性能及耐久性研究[D]. 荆州: 长江大学, 2023.

    ZHAI Quan. Study on mechanics and durability of basalt-polypropylene hybrid fiber lightweight aggregate concrete[D]. Jingzhou: Yangtze University, 2023(in Chinese).

    [12] 张克纯. 聚丙烯-玄武岩混杂纤维混凝土的耐久性能研究[J]. 非金属矿, 2020, 43(5): 45-47, 51. DOI: 10.3969/j.issn.1000-8098.2020.05.014

    ZHANG Kechun. Study on the durability of polypropylene-basalt fiber concrete[J]. Non-Metallic Mines, 2020, 43(5): 45-47, 51(in Chinese). DOI: 10.3969/j.issn.1000-8098.2020.05.014

    [13] 刘大昌. 玄武岩聚丙烯混杂纤维混凝土性能试验研究[D]. 重庆: 重庆交通大学, 2018.

    LIU Dachang. Study on the properties of basalt and polypropylene mixed fiber concrete[D]. Chongqing: Chongqing Jiaotong University, 2018(in Chinese).

    [14] 骆冰冰, 毕巧巍. 混杂纤维自密实混凝土孔结构对抗压强度影响的试验研究[J]. 硅酸盐通报, 2012, 31(3): 626-630.

    LUO Bingbing, BI Qiaowei. Experimental study on the influence of pore structure of hybrid fibers self-compacting concrete on compressive strength[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3): 626-630(in Chinese).

    [15]

    CHEN Y, AL-NESHAWY F, PUNKKI J. Investigation on the effect of entrained air on pore structure in hardened concrete using MIP[J]. Construction and Building Materials, 2021, 292: 123441. DOI: 10.1016/j.conbuildmat.2021.123441

    [16]

    ZHU Z, HUO W, SUN H, et al. Correlations between unconfined compressive strength, sorptivity and pore structures for geopolymer based on SEM and MIP measurements[J]. Journal of Building Engineering, 2023, 67: 106011. DOI: 10.1016/j.jobe.2023.106011

    [17]

    TANG S W, HE Z, CAI X H, et al. Volume and surface fractal dimensions of pore structure by NAD and LT-DSC in calcium sulfoaluminate cement pastes[J]. Construction and Building Materials, 2017, 143: 395-418. DOI: 10.1016/j.conbuildmat.2017.03.140

    [18]

    VÖLKL J J, BEDDOE R E, SETZER M J. The specific surface of hardened cement paste by small-angle X-ray scattering effect of moisture content and chlorides[J]. Cement and Concrete Research, 1987, 17(1): 81-88. DOI: 10.1016/0008-8846(87)90062-7

    [19]

    FORSE A C, MERLET C, GREY C P, et al. NMR studies of adsorption and diffusion in porous carbonaceous materials[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 124: 57-84.

    [20]

    ZENG Q, LUO M, PANG X, et al. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials[J]. Applied Surface Science, 2013, 282: 302-307. DOI: 10.1016/j.apsusc.2013.05.123

    [21]

    FU H, WANG X, ZHANG L, et al. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1422-1432. DOI: 10.1016/j.jngse.2015.07.025

    [22]

    MA X, WANG H, ZHOU S, et al. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103674. DOI: 10.1016/j.jngse.2020.103674

    [23]

    ZHANG S, ZHENG S, WANG E, et al. Grey model study on strength and pore structure of self-compacting concrete with different aggregates based on NMR[J]. Journal of Building Engineering, 2023, 64: 105560. DOI: 10.1016/j.jobe.2022.105560

    [24]

    FLEURY M, CHEVALIER T, BERTHE G, et al. Water diffusion measurements in cement paste, mortar and concrete using a fast NMR based technique[J]. Construction and Building Materials, 2020, 259: 119843. DOI: 10.1016/j.conbuildmat.2020.119843

    [25]

    HAN X, FENG J J, WANG B M. Relationship between fractal feature and compressive strength of fly ash-cement composite cementitious materials [J]. Cement and Concrete Composites, 2023, 139: 105052.

    [26] 谢恩慧, 周春圣. 利用低场磁共振弛豫测孔技术预测水泥基材料的水分渗透率[J]. 硅酸盐学报, 2020, 48(11): 1808-1816.

    XIE Enhui, ZHOU Chunsheng. Prediction of water permeability for cement-based material from the pore size distribution achieved by low-field nuclear magnetic resonance relaxation technique [J]. Chinese Journal of Ceramics, 2020, 48(11): 1808-1816(in Chinese).

    [27]

    LAN X, ZENG X, ZHU H, et al. Experimental investigation on fractal characteristics of pores in air-entrained concrete at low atmospheric pressure[J]. Cement and Concrete Composites, 2022, 130: 104509. DOI: 10.1016/j.cemconcomp.2022.104509

    [28]

    FAN J, ZHANG B. Study on freeze-thaw deterioration model of new-to-old concrete based on pore surface fractal characteristics[J]. Construction and Building Materials, 2024, 421: 135757. DOI: 10.1016/j.conbuildmat.2024.135757

    [29]

    MA H, SUN J, WU C, et al. Study on the pore and microstructure fractal characteristics of alkali-activated coal gangue-slag mortars[J]. Materials, 2020, 13(11): 2442. DOI: 10.3390/ma13112442

    [30]

    MAHAMUD M, LÓPEZ Ó, PIS J J, et al. Textural characterization of chars using fractal analysis[J]. Fuel Processing Technology, 2004, 86(2): 135-149.

    [31] 中华人民共和国住房和城乡建设部. 混凝土力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture and Building Press, 2019(in Chinese).

    [32] 薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2): 199-205.

    XUE Huijun, SHEN Xiangdong, ZOU Chunxia, et al. Freeze-thaw pore evolution of aeolian sand concrete based on nuclear magnetic resonance[J]. Journal of Building Materials, 2019, 22(2): 199-205(in Chinese).

    [33] 朱翔琛, 张云升, 刘志勇, 等. 基于核磁共振技术的硫酸盐冻融下机制骨料混凝土孔结构演变规律研究[J]. 复合材料学报, 2024, 41(10): 5478-5491.

    ZHU Xiangchen, ZHANG Yunsheng, LIU Zhiyong, et al. Study on the evolution of pore structure of manufactured aggregate concrete under sulfate freeze-thaw based on nuclear magnetic resonance technology[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5478-5491(in Chinese).

    [34]

    ZHAO K, MA C, YANG J, et al. Pore fractal characteristics of fiber-reinforced backfill based on nuclear magnetic resonance[J]. Powder Technology, 2023, 426: 118678. DOI: 10.1016/j.powtec.2023.118678

    [35] 高真, 曹鹏, 孙新建, 等. 玄武岩纤维混凝土抗压强度分析与微观表征[J]. 水力发电学报, 2018, 37(8): 111-120. DOI: 10.11660/slfdxb.20180812

    GAO Zhen, CAO Peng, SUN Xinjian, et al. Compressive strength analysis and microscopic characterization of basalt fiber reinforced concrete[J]. Journal of Hydroelectric Engineering, 2018, 37(8): 111-120(in Chinese). DOI: 10.11660/slfdxb.20180812

    [36] 刘卫东, 苏文悌, 王依民. 冻融循环作用下纤维混凝土的损伤模型研究[J]. 建筑结构学报, 2008(1): 124-128. DOI: 10.3321/j.issn:1000-6869.2008.01.018

    LIU Weidong, SU Wenti, WANG Yimin. Research on damage model of fiber concrete under action of freeze-thaw cycle[J]. Journal of Building Strucures, 2008(1): 124-128(in Chinese). DOI: 10.3321/j.issn:1000-6869.2008.01.018

    [37]

    HUO L, BI J, ZHAO Y, et al. Constitutive model of steel fiber reinforced concrete by coupling the fiber inclining and spacing effect[J]. Construction and Building Materials, 2021, 280: 122423. DOI: 10.1016/j.conbuildmat.2021.122423

    [38] 焦华喆, 韩振宇, 陈新明, 等. 玄武岩纤维对喷射混凝土力学性能及微观结构的影响机制[J]. 复合材料学报, 2019, 36(8): 1926-1934.

    JIAO Huazhe, HAN Zhenyu, CHEN Xinming, et al. Influence mechanism of basalt fibers on the toughness and microstructure of spray concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1926-1934(in Chinese).

    [39]

    WANG D, JU Y, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197: 464-473. DOI: 10.1016/j.conbuildmat.2018.11.181

    [40]

    CHEN F, XU B, JIAO H, et al. Fiber distribution and pore structure characterization of basalt fiber reinforced concrete[J]. Journal of China University of Mining and Technology, 2021, 2: 273-280.

    [41]

    GUO Y, HU X, LYU J. Experimental study on the resistance of basalt fibre-reinforced concrete to chloride penetration[J]. Construction and Building Materials, 2019, 223: 142-155. DOI: 10.1016/j.conbuildmat.2019.06.211

    [42]

    NIU D T, SU L, LUO Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete[J]. Construction and Building Materials, 2020, 237: 117628. DOI: 10.1016/j.conbuildmat.2019.117628

    [43]

    XU L, DENG F, CHI Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste[J]. Construction and Building Materials, 2017, 145: 619-638. DOI: 10.1016/j.conbuildmat.2017.04.035

    [44] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.

    XUE Cuizhen, SHEN Aiqin, GUO Yinchuan. Prediction model for the compressive strength of concrete mixed with CWCPM based on pore structure parameters [J] Materials Reports, 2019, 33(8): 1348-1353(in Chinese).

    [45]

    XIONG Q X, TONG L Y, ZHANG Z D, et al. A new analytical method to predict permeability properties of cementitious mortars: The impacts of pore structure evolutions and relative humidity variations[J]. Cement and Concrete Composites, 2023, 137: 104912. DOI: 10.1016/j.cemconcomp.2022.104912

    [46]

    TONG L Y, XIONG Q X, ZHANG Z D, et al. A novel lattice model to predict chloride diffusion coefficient of un-saturated cementitious materials based on multi-typed pore structure characteristics[J]. Cement and Concrete Research, 2024, 176: 107351.

    [47]

    YU B M, LI J H. A geometry model for tortuosity of flow path in porous media[J]. Chinese Physics Letters, 2004, 21(8): 1569. DOI: 10.1088/0256-307X/21/8/044

    [48] 罗祥. 引气剂低温作用效果及其温度敏感性机理[D]. 北京: 中国建筑材料科学研究总院, 2023.

    LUO Xiang. Performance of air-entraining agents at low temperature and its temperature sensitivity mechanism[D]. Beijing: China Building Materials Academy, 2023(in Chinese).

    [49]

    LAI J, WANG G, FAN Z, et al. Fractal analysis of tight shaly sandstones using nuclear magnetic resonance measurements[J]. AAPG Bulletin, 2018, 102(2): 175-193. DOI: 10.1306/0425171609817007

    [50] 张金喜, 金珊珊. 水泥混凝土微观孔隙结构及其作用[M]. 北京: 中国科学技术出版社, 2014: 46-48.

    ZHANG Jinxi, JIN Shanshan. Cement concrete microscopic pore structure and its role[M]. Beijing: Science and Technology of China press, 2014: 46-48(in Chinese).

    [51]

    ZHANG B, LI S. Determination of the surface fractal dimension for porous media by mercury porosimetry[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1383-1386.

    [52]

    LI Y, ZHANG J, HE Y, et al. A review on durability of basalt fiber reinforced concrete[J]. Composites Science and Technology, 2022, 225: 109519. DOI: 10.1016/j.compscitech.2022.109519

    [53]

    ZHANG W, SHI D, SHEN Z, et al. Reduction of the calcium leaching effect on the physical and mechanical properties of concrete by adding chopped basalt fibers[J]. Construction and Building Materials, 2023, 365: 130080. DOI: 10.1016/j.conbuildmat.2022.130080

    [54]

    LI J J, NIU J G, WAN C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction and Building Materials, 2016, 118: 27-35. DOI: 10.1016/j.conbuildmat.2016.04.116

    [55]

    ZAMBRANO O A, CORONADO J J, RODRÍGUEZ S A. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200℃ in air[J]. Surface and Coatings Technology, 2015, 282: 155-162. DOI: 10.1016/j.surfcoat.2015.10.028

    [56] 本斯迪德. 水泥的结构和性能[M]. 北京: 化学工业出版社, 2008: 113-114.

    BENSTED J. Structure and properties of cement[M]. Beijing: Chemical Industry Press of China, 2008: 113-114(in Chinese).

    [57]

    HAN X, WANG B M, FENG J J. Relationship between fractal feature and compressive strength of concrete based on MIP[J]. Construction and Building Materials, 2022, 322: 126504. DOI: 10.1016/j.conbuildmat.2022.126504

  • 其他相关附件

  • 目的 

    研究不同掺量的玄武岩-聚丙烯混杂纤维增强混凝土(HBPRC)的谱分布、孔隙率、孔径分布、曲折度等孔隙特征以及孔隙结构分形维数与抗压强度的关系。

    方法 

    采用核磁共振技术、SEM微观形貌分析及分形理论共同揭示了BF、PF及BF-PF混杂对混凝土孔隙特征和抗压强度的影响。结果表明:适量的BF可以减小混凝土的孔隙率,随着PF含量增加,混凝土内部孔隙有扩大的趋势。BF和PF分别为0.05%混杂时可在混凝土内部形成均匀分布的三维纤维网,在混凝土中发挥出正协同作用。BF0.05PF0.05较普通混凝土孔隙率降低了1.47%,凝胶孔占比增大了8.76%,大孔占比降低了5.30%,混凝土的孔径分布得到优化,同时抗压强度和曲折度得到提高;通过分形理论表明HBPRC的孔隙结构具有明显的分形特征,孔隙结构分形维数随着孔径增大而减小,且与抗压强度有相关关系;通过微观分析认为,纤维在混凝土基体中的粘结状态和分布是影响HBPRC孔隙分形特征的主要原因。

    结论 

    综上,BF-PF混杂可以减小混凝土的孔隙率、优化孔径分布、提高孔隙的曲折度,使混凝土具有更好的孔隙特征,同时得出HBPRC的孔隙结构具有明显的分形特征,而且孔隙结构分形维数既可以作为其孔隙分形特征的定量表达,也可以客观反应其抗压强度。

  • 混杂纤维可以在混凝土发挥各自的纤维优势,相互激发、相互补充,达到取长补短的效果,有利于减少混凝土的固有缺陷,提升混凝土的性能,在纤维混凝土领域吸引了越来越多的研究。玄武岩-聚丙烯混杂纤维增强混凝土(HBPRC)作为一种新型的建筑材料尚处于一个初期的探索阶段,明晰两种纤维及其混杂对混凝土孔隙结构的影响可助力HBPRC的推广及应用。

    采用核磁共振(Nuclear Magnetic Resonance,NMR)测试了HBPRC的孔隙特征,对比分析了玄武岩纤维(BF)和聚丙烯纤维(PF)以及二者混杂对HBPRC的抗压强度、孔隙率、孔径分布和曲折度的影响,并基于核磁共振T2谱和孔隙结构分形理论对4个孔径区域的孔隙结构分形维数进行了量化。结果表明:随着BF的添加,T2谱反映出适量的BF可以减小混凝土的孔隙率,而且有利于减小大孔体积占比;而随着PF含量增加,T2谱面积增加,且混凝土内部孔隙有变大的趋势。掺入BF-PF混杂纤维对混凝土的孔隙特征会产生正协同作用,当BF和PF掺量均为0.05%时,协同作用最佳,与普通混凝土相比,抗压强度提高了3.52%、孔隙率降低了1.47%、曲折度提高了8.20%。凝胶孔体积占比增大了8.76%,大孔体积占比降低了5.30%,孔径分布得到优化。HBPRC的孔隙结构具有明显的分形特征,孔隙结构分形维数在过渡孔、毛细孔和大孔区域依次增加,此外,分形维数越大,抗压强度越大。通过微观分析认为,纤维在混凝土基体中的粘结状态和分布是影响HBPRC孔隙分形特征的主要原因。

图(17)  /  表(4)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  104
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-17
  • 修回日期:  2024-04-28
  • 录用日期:  2024-05-08
  • 网络出版日期:  2024-06-11
  • 发布日期:  2024-05-20
  • 刊出日期:  2024-11-26

目录

    /

    返回文章
    返回