留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度分析的再生混凝土有效氯离子扩散系数预测

牟新宇 王云伟 卢石宝 鲍玖文 张鹏 张锦隆

牟新宇, 王云伟, 卢石宝, 等. 基于多尺度分析的再生混凝土有效氯离子扩散系数预测[J]. 复合材料学报, 2023, 40(5): 2876-2884. doi: 10.13801/j.cnki.fhclxb.20220726.001
引用本文: 牟新宇, 王云伟, 卢石宝, 等. 基于多尺度分析的再生混凝土有效氯离子扩散系数预测[J]. 复合材料学报, 2023, 40(5): 2876-2884. doi: 10.13801/j.cnki.fhclxb.20220726.001
MOU Xinyu, WANG Yunwei, LU Shibao, et al. Prediction of effective chloride diffusion coefficient of recycled aggregate concrete based on multiscale analysis[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2876-2884. doi: 10.13801/j.cnki.fhclxb.20220726.001
Citation: MOU Xinyu, WANG Yunwei, LU Shibao, et al. Prediction of effective chloride diffusion coefficient of recycled aggregate concrete based on multiscale analysis[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2876-2884. doi: 10.13801/j.cnki.fhclxb.20220726.001

基于多尺度分析的再生混凝土有效氯离子扩散系数预测

doi: 10.13801/j.cnki.fhclxb.20220726.001
基金项目: 国家自然科学基金(51908307;51922052;U2106219)
详细信息
    作者简介:

    牟新宇(2001—),男。主要从事再生混凝土耐久性方面的研究 E-mail:2718701013@qq.com

    通讯作者:

    鲍玖文,博士,副教授,硕士生导师,研究方向为混凝土耐久性 E-mail: baojiuwen@qut.edu.cn

  • 中图分类号: TU528;TB330

Prediction of effective chloride diffusion coefficient of recycled aggregate concrete based on multiscale analysis

Funds: National Natural Science Foundation of China (51908307; 51922052; U2106219)
  • 摘要: 将再生混凝土视为由砂浆相、再生骨料相和二者砂浆之间的界面过渡区相(ITZ-2)组成的非均质复合材料,其中砂浆相由细骨料、细骨料-新砂浆界面过渡区(ITZ-1)、硬化水泥浆体三相组成,而再生骨料相由旧骨料、附着砂浆及旧骨料与旧砂浆的界面(ITZ-3)三相组成。基于N层球夹杂理论,考虑微观相的影响,建立了再生混凝土有效氯离子扩散系数预测的五相多尺度模型,通过硬化水泥浆体、砂浆和再生混凝土的稳态扩散系数实测值与模型预测值对比分析,验证其模型的准确性和有效性;最后,进一步讨论了氯离子侵蚀时间、再生骨料体积分数和附着砂浆含量等关键参数对其有效扩散系数的影响。结果表明:有效扩散系数预测值与试验值吻合较好,说明模型对预测再生混凝土的有效氯离子扩散系数具有普适性,为氯盐环境下再生混凝土耐久性评估与寿命预测提供理论依据。

     

  • 图  1  再生混凝土(RAC)多尺度模型结构示意图

    AFt—Ettringite; AFm—Calcium sulfoaluminate; C-S-H—Hydrated silicate gel; CH—Calcium hydroxide; ITZ-1—Interfacial transition zone between new mortar and fine aggregate; ITZ-2—Interfacial transition zone between new mortar and old adhered mortar; ITZ-3—Interfacial transition zone between old adhered mortar and old aggregate

    Figure  1.  Schematic diagram of recycled aggregate concrete (RAC) multiscale model structure

    图  2  基于N层球夹杂理论的RAC五相复合球体模型

    Figure  2.  Five-phase composite spherical model of RAC based on N-layer spherical inclusion theory

    R1, Ri−1, Rn—Concentric circles of radius

    图  3  RAC多尺度模型建立流程

    Figure  3.  Building process of multiscale RAC model

    图  4  不同水灰比(w/c)的硬化水泥浆体有效扩散系数计算值与文献[23]中试验结果对比

    Figure  4.  Comparison of effective diffusion coefficient of hardened cement paste with different water/cement ratios (w/c) between predicted results and experimental data in the literature [23]

    图  5  不同侵蚀时间下硬化水泥浆体有效扩散系数计算值与试验值对比

    Figure  5.  Comparison of effective diffusion coefficient of hardened cement for different exposure time between predicted and experimental results

    图  6  砂浆相有效扩散系数预测值与试验值对比

    Figure  6.  Comparison of effective diffusion coefficient for mortar phase between predicted and experimental results

    图  7  再生混凝土有效扩散系数预测值与实测值对比

    Figure  7.  Comparison of effective diffusion coefficient of RAC between predicted and experimental results

    图  8  侵蚀时间、再生骨料体积分数和附着砂浆含量对再生混凝土有效扩散系数的影响

    w/c—Water cement ratio; R—Rate of adhered mortar; V—Volume fraction of RCA; t—Exposure time; RCA—Recylced coarse aggregate

    Figure  8.  Effect of exposure time, volume fraction of recycled aggregate and attached mortar content on effective diffusion coefficient of RAC

  • [1] MA M, TAM V W Y, LE K N, et al. Factors affecting the price of recycled concrete: A critical review[J]. Journal of Building Engineering,2022,46:103743. doi: 10.1016/j.jobe.2021.103743
    [2] BAO J, LI S, ZHANG P, et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete[J]. Construction and Building Materials,2020,239:117845. doi: 10.1016/j.conbuildmat.2019.117845
    [3] GUO H, SHI C, GUAN X, et al. Durability of recycled aggregate concrete—A review[J]. Cement and Concrete Composites,2018,89:251-259. doi: 10.1016/j.cemconcomp.2018.03.008
    [4] XIAO J, YING J, SHEN L. FEM simulation of chloride diffusion in modeled recycled aggregate concrete[J]. Construction and Building Materials,2012,29:12-23. doi: 10.1016/j.conbuildmat.2011.08.073
    [5] HU Z, MAO L, XIA J, et al. Five-phase modelling for effec-tive diffusion coefficient of chlorides in recycled concrete[J]. Magazine of Concrete Research,2018,70(11):583-594. doi: 10.1680/jmacr.17.00194
    [6] JIN L, YU H, WANG Z, et al. Effect of crack and damaged zone on chloride penetration in recycled aggregate concrete: A seven-phase mesoscale numerical method[J]. Construction and Building Materials,2021,291:123383. doi: 10.1016/j.conbuildmat.2021.123383
    [7] WU Y, XIAO J. Multiscale digital-image driven stochastic finite element modeling of chloride diffusion in recycled aggregate concrete[J]. Construction and Building Materials,2018,162:239-252. doi: 10.1016/j.conbuildmat.2017.12.024
    [8] YU Y, LIN L. Modeling and predicting chloride diffusion in recycled aggregate concrete[J]. Construction and Building Materials,2020,264:120620. doi: 10.1016/j.conbuildmat.2020.120620
    [9] HERVÉ E. Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced composites[J]. International Journal of Solids and Structures,2002,39(4):1041-1058. doi: 10.1016/S0020-7683(01)00257-8
    [10] TIAN Y, TIAN Z, JIN N, et al. A multiphase numerical simulation of chloride ions diffusion in concrete using electron microprobe analysis for characterizing properties of ITZ[J]. Construction and Building Materials,2018,178:432-444. doi: 10.1016/j.conbuildmat.2018.05.047
    [11] YANG C, LIANG C. Determining the steady-state chloride migration coefficient of ITZ in mortar by using the accelerated chloride migration test[J]. Journal of the Chinese Institute of Engineers,2014,37(7):892-898. doi: 10.1080/02533839.2014.888813
    [12] BOURDETTE B, RINGOT E, OLLIVIER J P. Modelling of the transition zone porosity[J]. Cement and Concrete Research,1995,25(4):741-751. doi: 10.1016/0008-8846(95)00064-J
    [13] XIAO J, LI W, SUN Z, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation[J]. Cement and Concrete Composites,2013,37:276-292. doi: 10.1016/j.cemconcomp.2013.01.006
    [14] OH B H, JANG S Y. Prediction of diffusivity of concrete based on simple analytic equations[J]. Cement and Concrete Research,2004,34(3):463-480. doi: 10.1016/j.cemconres.2003.08.026
    [15] GUO Y, ZHANG T, DU J, et al. Evaluating the chloride diffusion coefficient of cement mortars based on the tortuosity of pore structurally-designed cement pastes[J]. Microporous and Mesoporous Materials,2021,317:111018. doi: 10.1016/j.micromeso.2021.111018
    [16] XIE J, WANG J, LI M, et al. Estimation of chloride diffusion coefficient from water permeability test of cementitious materials[J]. Construction and Building Materials,2022,340:127816. doi: 10.1016/j.conbuildmat.2022.127816
    [17] POWERS T C. Physical properties of cement paste[R]. Chicago: National Bureau of Standards Monograph, 1962.
    [18] NAKARAI K, ISHIDA T, MAEKAWA K. Multi-scale physicochemical modeling of soil-cementitious material interaction[J]. Soils and Foundations,2006,46(5):653-663. doi: 10.3208/sandf.46.653
    [19] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology,2003,1(2):91-126. doi: 10.3151/jact.1.91
    [20] SUN G, ZHANG Y, SUN W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete[J]. Construction and Building Materials,2011,25(10):3820-3831. doi: 10.1016/j.conbuildmat.2011.03.041
    [21] STAMBAUGH N D, BERGMAN T L, SRUBAR III W V. Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete[J]. Construction and Building Materials,2018,161:236-245. doi: 10.1016/j.conbuildmat.2017.11.084
    [22] KRSTULOVIĆ R, DABIĆ P. A conceptual model of the cement hydration process[J]. Cement and Concrete Research,2000,30(5):693-698. doi: 10.1016/S0008-8846(00)00231-3
    [23] ZHENG J, ZHANG J, ZHOU X, et al. A three-step analytical scheme for estimating the steady-state chloride diffusion coefficient of mature cement paste[J]. Construction and Building Materials,2018,191:1004-1010. doi: 10.1016/j.conbuildmat.2018.10.070
    [24] OZBAKKALOGLU T, GHOLAMPOUR A, XIE T. Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content[J]. Journal of Materials in Civil Engineering,2018,30(2):04017275. doi: 10.1061/(ASCE)MT.1943-5533.0002142
    [25] YU S W, PAGE C L. Diffusion in cementitious materials: 1. Comparative study of chloride and oxygen diffusion in hydrated cement pastes[J]. Cement and Concrete Research,1991,21(4):581-588. doi: 10.1016/0008-8846(91)90109-U
    [26] NGALA V T, PAGE C L, PARROTT L J, et al. Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA pastes[J]. Cement and Concrete Research,1995,25(4):819-826. doi: 10.1016/0008-8846(95)00072-K
    [27] NUMATA S, AMANO H, MINAMI K. Diffusion of tritiated water in cement materials[J]. Journal of Nuclear Materials,1990,171(2-3):373-380. doi: 10.1016/0022-3115(90)90383-X
    [28] MACDONALD K A, NORTHWOOD D O. Experimental measurements of chloride ion diffusion rates using a two-compartment diffusion cell: Effects of material and test variables[J]. Cement and Concrete Research,1995,25(7):1407-1416. doi: 10.1016/0008-8846(95)00135-Y
    [29] TANG L P, NILSSON L O. Rapid determination of the chloride diffusivity in concrete by applying an electric field[J]. Materials Journal,1993,89(1):49-53.
    [30] CARÉ S, HERVÉ E. Application of a n-phase model to the diffusion coefficient of chloride in mortar[J]. Transport in Porous Media,2004,56(2):119-135. doi: 10.1023/B:TIPM.0000021730.34756.40
    [31] 罗伯光, 覃荷瑛. 利用NEL法研究再生混凝土抗氯离子渗透性能[J]. 混凝土, 2014(9):41-44. doi: 10.3969/j.issn.1002-3550.2014.09.010

    LUO Boguang, QIN Heying. Study on anti-chloride ion permeability of recycled aggregate concrete by NEL method[J]. Concrete,2014(9):41-44(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.09.010
    [32] 覃荷瑛, 唐慧. 粗骨料含量对再生混凝土抗氯离子渗透性能影响的试验研究[J]. 中外公路, 2015, 35(6):286-290. doi: 10.14048/j.issn.1671-2579.2015.06.065

    QIN Heying, TANG Hui. Experimental study on the influence of coarse aggregate content on chloride penetration resistance of recycled concrete[J]. Journal of China & Foreign Highway,2015,35(6):286-290(in Chinese). doi: 10.14048/j.issn.1671-2579.2015.06.065
    [33] 丁小雅. 水分和氯离子在再生混凝土中的传输机理[D]. 青岛: 青岛理工大学, 2018.

    DING Xiaoya. The transport mechanism of moisture and chloride ions in recycled concrete[D]. Qingdao: Qingdao University of Technology, 2018.
    [34] 胡波, 柳炳康, 张李黎. 再生混凝土氯离子渗透性能测试与分析[J]. 合肥工业大学学报(自然科学版), 2009, 32(8):1240-1243.

    HU Bo, LIU Bingkang, ZHANG Lili. Chloride ion permeabi-lity test and analysis for recycled concrete[J]. Journal of Hefei University of Technology (Natural Science),2009,32(8):1240-1243(in Chinese).
    [35] WANG W, WU J, WANG Z, et al. Chloride diffusion coefficient of recycled aggregate concrete under compressive loading[J]. Materials and Structures,2016,49(11):4729-4736. doi: 10.1617/s11527-016-0820-x
    [36] 胡志, 毛丽璇, 刘清风. 再生骨料混凝土抗氯离子侵蚀的多相数值研究[J]. 硅酸盐通报, 2020, 39(8):2425-2432. doi: 10.16552/j.cnki.issn1001-1625.2020.08.009

    HU Zhi, MAO Lixuan, LIU Qingfeng. Multi-phase numeri-cal analysis of chloride resistance of recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2020,39(8):2425-2432(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.08.009
  • 加载中
图(8)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  354
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-24
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-07-26
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回