高聚物改良砂土强度特性和变形特征试验研究

Experimental study on strength and deformation characteristics of polymers treated sand

  • 摘要: 基于高聚物加固砂土展开抗剪和抗压试验,分析了高聚物掺量、养护时间和干密度对加固砂土强度和变形特征的影响,并阐明其相关性,最后结合SEM图像揭示了高聚物加固砂土的破坏机制。结果表明:(1) 3个研究变量对加固砂土抗压和抗剪强度有显著促进作用,其中高聚物含量和养护时间对抗剪强度的影响主要体现在黏聚力上,并且强度与养护时间强正相关,与高聚物含量和干密度中等正相关,可用对数函数(或线性函数)表示其关系;(2) 3个研究变量增加时,试样剪切特征由剪切硬化型转变为剪切软化型、破坏位移逐渐减小(干密度减小时),轴向应力-应变曲线表现明显的峰后缓和现象并产生明显的变化,破坏模式以鼓胀并伴有裂缝为主,形态由E型逐渐变为G型(干密度减小时);(3) 加固砂土变形特征与养护时间强正相关,与干密度中等负相关,而与高聚物含量相关性不显著,峰值应变与3个研究变量呈多项式(或线性)关系;(4) 对于高聚物加固砂土,最佳掺量为约2%,养护24 h及以上时效果显著;(5) 高聚物通过吸附、粘结和填充作用在砂粒间形成有效稳定的三维网状膜结构,从而改良砂土微观结构,高聚物在荷载下的变化类型占比决定了加固砂土的变形能力和破坏模式,而这与高聚物掺量、养护时间和干密度密切相关。

     

    Abstract: Polymer has broad application prospects in soil stabilization. However, there is currently little research on the strength and deformation characteristics of polymer treated soil, as well as the degree of influence of different influencing factors. In this work, a series of unconfined compression strength and shear strength tests were performed on a water-soluble polymer treated sand, and subsequently, the effects of polymer content, curing time and dry density on the strength and deformation characteristics of the treated sand were analyzed. Also, the degree of influence of the three research variables was elucidated using correlation analysis. And finally, the related mechanism of treated sand was revealed using SEM observations. The results show that: (1) The three studied variables significantly enhance the unconfined compression strength and shear strength, and the influence of polymer content and curing time on shear strength was mainly reflected in the cohesion. The strength of polymer treated sand is significantly and positively correlated with curing time, and moderately and positively correlated with polymer content and dry density. In addition, these relationships can be represented by a logarithmic function or linear function. (2) As the polymer content, curing time and dry density increase, the shear characteristics of treated sand change from shear hardening type to shear softening type, and the shear failure displacement of treated sand decreases gradually (as dry densities decreases). Also, its axial stress-strain curve shows obvious post-peak easing phenomenon and then produces obvious changes, and the compression failure pattern is dominated by bulging and accompanied by cracks, what's more, this pattern gradually changes from E-type to G-type (as dry densities decreases). (3) The deformation capacity of treated sand is strongly and positively correlated with curing time, moderately and positively correlated with dry density, while the correlation with polymer content is not significant. Additionally, the peak strain has a polynomial (or linear) relationship with three studied variables. (4) For this polymer treated sand, the optimum mixing content is about 2%, and when the curing time reaches 24 h and above, it shows a better treatment effect. (5) The polymer forms an effective and stable three-dimensional membrane structure in the sand particles by adsorption, bonding and filling effects, and thus effectively improves the microstructure of sand. The proportion of changes in the types of polymers under load determines the strength, deformation capacity, and failure mode of treated sand, which is closely related to polymer content, curing time and dry density.

     

/

返回文章
返回