Sm掺杂核-壳结构介孔SiO2@CeO2复合颗粒的制备和抛光性能

Sm-doped core-shell structured mesoporous SiO2@CeO2 composite particles: Preparation and polishing performance

  • 摘要: 在低模量介孔SiO2 (Mesoporous silica,mSiO2)微球表面负载Sm掺杂CeO2纳米粒子,制备了具有均匀完整核-壳结构的非刚性mSiO2@Ce1-xSmxO2x=0,0.23)复合颗粒。借助XRD、SEM、HRTEM、STEM-EDX Mapping、Raman光谱和N2吸-脱附等技术对产物进行结构表征,利用AFM和三维光学轮廓仪评价Sm元素掺杂处理对mSiO2@Ce1-xSmxO2x=0,0.23)复合颗粒抛光效果的影响。讨论了Sm掺杂复合磨粒的高效无损超精密抛光机制。结果表明:掺杂处理可使mSiO2@Ce1-xSmxO2x=0,0.23)复合颗粒的抛光效率提高近36%,达到84 nm/min,同时获得具有原子量级精度的加工表面,抛光后SiO2薄膜的粗糙度平均值和均方根分别为0.14和0.17 nm。

     

    Abstract: The mesoporous silica (mSiO2) microspheres were grafted with the Sm-doped CeO2 nanoparticles via a facile and efficient co-precipitation approach. The uniform non-rigid mSiO2@Ce1-xSmxO2(x=0, 0.23) composite particles with a well-defined core-shell structure were obtained. The resulting samples were characterized in terms of powder XRD, SEM, HRTEM, STEM-EDX Mapping, Raman, and N2 adsorption-desorption measurements. The effects of Sm doping on the polishing performance of mSiO2@Ce1-xSmxO2(x=0, 0.23) composite abrasives were evaluated using AFM and three-dimensional noncontact interferometric microscope. The ultra-precision and high-efficiency polishing mechanisms of the Sm-doped abrasives were also discussed. The polishing results show that the Sm doping contributes to 36% increment of the removal rate which is 84 nm/min compared to the undoped composites. The Sm-doped abrasives achieve an atomic-scale surface finish, and the average roughness and root-mean-square roughness of the polished SiO2 films are 1.4 and 0.17 nm, respectively.

     

/

返回文章
返回