Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHAO Zhongguo, WANG Chouxuan, XUE Rong, et al. Design of Hybridized Network Structure and Photoelectric Thermal Conversion Performance of polyethylene glycol-based Phase Change Composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3613-3623.
Citation: ZHAO Zhongguo, WANG Chouxuan, XUE Rong, et al. Design of Hybridized Network Structure and Photoelectric Thermal Conversion Performance of polyethylene glycol-based Phase Change Composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3613-3623.

Design of Hybridized Network Structure and Photoelectric Thermal Conversion Performance of polyethylene glycol-based Phase Change Composites

Funds:  Fund of Education Department of Shaanxi Province (23JK0373),Talent Start-up Fund of Shaanxi University of Technology (SLGRCQD2329),
  • Received Date: 2023-09-12
  • Accepted Date: 2023-11-09
  • Rev Recd Date: 2023-10-30
  • Available Online: 2023-11-28
  • Publish Date: 2024-07-15
  • PEG60PLA40CNT0.6X(y) phase-change energy storage composites were prepared in this paper by physically hybridizing carbon nanotubes (CNTs) with boron nitride (BN), aluminum trioxide (Al2O3), and copper powder (Cu), respectively, to investigate the effects of nanoparticles with different structures on the shape stability and photovoltaic conversion efficiency of polyethylene glycol (PEG) based phase-change composites. The incorporation of Al2O3 and Cu nanofillers has a minor effect on the electrical conductivity of the PEG/PLA/CNT/X(y) composites; however, the introduction of BN drastically reduces the electrical conductivity of the composites. When the mass ratio of BN reaches 40%, the electrical conductivity of the PEG60-PLA40-CNT0.6-BN40 composites is only 8.71×10-7 S/m, indicating obvious insulating properties. The spherical Al2O3 nanoparticles were found to be uniformly distributed inside the composites by SEM and EDS energy spectroscopy, and the thermal conductivity and enhancement factor ($ \varPhi $) values of PEG60-PLA40-CNT0.6-Al2O3(40) composites were as high as 5.81 W/m·K and 363.6%, respectively. Compared to the PEG60-PLA40 composites, the addition of Al2O3 improves the photothermal conversion efficiency ($ \eta $), photosensitive response rate, and current stability of PEG60-PLA40-CNT0.6-Al2O3(40) composites, raising the value from 42.9% to 72.9%.

     

  • loading
  • [1]
    JI R, WEI S, XIA Y, et al. Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage[J]. Journal of Energy Storage, 2020, 27(C): 101134.1-101134.10.
    [2]
    王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能[J]. 复合材料学报, 2023, 40(6): 1-9 (in Chinese).

    WANG X B, ZHANG C H, ZHANG T D, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3341-3349 (in Chinese).
    [3]
    JIANG Y, WANG Z, SHANG M, et al. Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices[J]. Nanoscale, 2015, 7(25): 10950-3. doi: 10.1039/C5NR02051D
    [4]
    SONG N, HOU X, CHEN L, et al. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9: 17914.
    [5]
    SONG N, JIAO D, CUI S, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Applied Materials & Interfaces, 2017, 9: 2924.
    [6]
    CUI S, JIANG F, SONG N, et al. Flexible films for smart thermal management: influence of structure construction of a two-dimensional graphene network on active heat dissipation response behavior[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30352-30359.
    [7]
    MADHULATHA G, MOHAN J, SATEESH P. Optimization of tube arrangement and phase change material for enhanced performance of solar air heater- A numerical analysis[J]. Journal of Energy Storage, 2021, 41(41): 102876.1-102876.10.
    [8]
    ALI H. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review[J]. Journal of Energy Storage, 2019, 26(C): 100986.1-100986.15.
    [9]
    VELMURUGAN K, KARTHIKEYAN V, KUMATASAMY S, et al. Thermal mapping of photovoltaic module cooling via radiation-based phase change material matrix: A case study of a large-scale solar farm in Thailand[J]. Journal of Energy Storage, 2022, 55(PD): 651-668.
    [10]
    FENG D, NAN J, FENG Y, et al. Numerical investigation on improving the heat storage and transfer performance of ceramic /D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives[J]. International Journal of Heat and Mass Transfer, 2021, 179(179): 121748-121758.
    [11]
    LI G, ZHANG X, WANG J, et al. From anisotropic graphene aerogels to electron- and photo-driven phase change composites[J]. Journal of Material Chemistry A, 2016, 4(43): 17042-9. doi: 10.1039/C6TA07587H
    [12]
    ZENG X, SUN J, YAO Y, et al. A Combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano, 2017, 11: 5167. doi: 10.1021/acsnano.7b02359
    [13]
    XIN G, SUN H, HU T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials 2014, 26: 4521.
    [14]
    HAN Y, YANG Y, MALLICK T, et al. Nanoparticles to enhance melting performance of phase change materials for thermal energy storage[J]. Nanomaterials, 2022, 12(11): 1864. doi: 10.3390/nano12111864
    [15]
    JIA X, LI Q, AO C, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites, Part A. Applied science and manufacturing, 2020, 129(C): 105710 .
    [16]
    WANG Z, ZHANG H, DOU B, et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials[J]. Applied thermal engineering: Design, processes, equipment, economics, 2022, 201(PB): 117778-1-117778-14.
    [17]
    赵中国, 薛嵘, 王筹萱, 等. 石墨烯-碳纳米管/聚乳酸/聚乙二醇相变储能复合材料的制备与温敏响应行为[J]. 复合材料学报, 2023: 1-10(in Chinese).

    ZHAO Z, XUE R, WANG C, et al. Preparation and temperature sensitive response behavior of graphene carbon nanotubes/polylactic acid/polyethylene glycol phase change energy storage composite materials[J]. Journal of Composite Materials, 2023: 1-10(in Chinese).
    [18]
    申思扬, 赵中国, 苏巨桥, 等. 导电复合相变储能材料的制备及温敏响应性能[J]. 高分子材料科学与工程, 2023, 39(01): 151-159 (in Chinese).

    SHEN S, ZHAO Z, SU J, et al. Preparation and temperature sensitive response performance of conductive composite phase change energy storage materials[J]. Polymer Material Science and Engineering, 2023, 39(01): 151-159 (in Chinese).
    [19]
    ZHAN Y, ZHENG X, NAN B, et al. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy[J]. European Polymer Journal, 2023, 186: 111847. doi: 10.1016/j.eurpolymj.2023.111847
    [20]
    ZHAO Z, XUE R, MI D, et al. Regulating the temperature-sensing behavior of poly(lactic acid) by incorporating multiwalled carbon nanotubes and graphene nanoplatelets[J]. Polymer Composites, 2023, 44(10): 6379-6392. doi: 10.1002/pc.27565
    [21]
    FENG C, WEI F, SUN K, et al. Emerging flexible thermally conductive films: mechanism, fabrication, application[J]. Nano-Micro Letters, 2022, 14(08): 1-34.
    [22]
    DING D, HUANG R, WANG X, et al. Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism[J]. Chemical Engineering Journal, 2022, 441: 136104. doi: 10.1016/j.cej.2022.136104
    [23]
    YU J, SUNDQVIST B, Tonpheng B, et al. Thermal conductivity of highly crystallized polyethylene[J]. Polymer, 55(1): 195-200.
    [24]
    ZHANG W, ZHANG Z, YANG J, et al. Largely enhanced thermal conductivity of poly (vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide[J]. Carbon, 2015, 90: 242-254. doi: 10.1016/j.carbon.2015.04.040
    [25]
    YANG J, TANG L, BAO R, et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability[J]. Solar Energy Materials and Solar Cells, 2018, 174: 56-64. doi: 10.1016/j.solmat.2017.08.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (158) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return