Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
GAO Fengjiao, CHANG Xueting, LI Junfeng, et al. Humidity-resistant ammonia sensor based on PTFE/ZnO/Ti3C2Tx composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3660-3671.
Citation: GAO Fengjiao, CHANG Xueting, LI Junfeng, et al. Humidity-resistant ammonia sensor based on PTFE/ZnO/Ti3C2Tx composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3660-3671.

Humidity-resistant ammonia sensor based on PTFE/ZnO/Ti3C2Tx composite films

Funds:  Shanghai Natural Science Foundation (No. 21ZR1426700)
  • Received Date: 2023-09-20
  • Accepted Date: 2024-01-05
  • Rev Recd Date: 2023-12-05
  • Available Online: 2024-02-24
  • Publish Date: 2024-07-15
  • The development of moisture-resistant room-temperature gas sensors based on semiconductor functional materials has always been a hot and difficult research topic in the field of gas sensors. Considering the high sensitivity and stability of metal oxide semiconductor, the room-temperature gas-sensing behaviors of Mxene (Ti3C2Tx) and the hydrophobicity of polytetrafluoroethylene (PTFE), we here prepared the PTFE/ZnO/Mxene composite films by depositing the PTFE and ZnO layers orderly onto the Mxene film surface via a magnetron sputtering method, followed by the construction of the gas sensors based on the composite films. The PTFE/ZnO/Mxene composite films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), and the gas-sensing and humidity-resistant properties of the composite films-based gas sensors were investigated. Results showed that the PTFE/ZnO/Ti3C2Tx composite films-based gas sensors exhibited good selectivity, high sensitivity, and excellent reproducibility towards ammonia at room temperature. With the increase of the thickness of the PTFE layers, the humidity resistance of the composite films-based gas sensors gradually increased, but at the cost of sensitivity.

     

  • loading
  • [1]
    张文宇, 丁园, 孙宇凡, 等. 新型二维气敏材料的研究进展[J]. 陶瓷学报, 2023, 44(01): 1-11

    ZHANG Wenyu, DING Yuan, SUN Yufan, et al. Research progress of new two-dimensional gas sensing materials[J]. Journal of Ceramics, 2023, 44(01): 1-11(in Chinese).
    [2]
    WU M, HE M, HU Q, et al. Ti3C2 Mxene-Based Sensors with High Selectivity for NH3 Detec-tion at Room Temperature[J]. ACS Sensors, 2019, 4(10): 2763-2770. doi: 10.1021/acssensors.9b01308
    [3]
    ZHANG H F, XUAN J Y, ZHANG Q, et al. Strategies and challenges for enhancing perfo- rmance of MXene-based gas sensors: a review[J]. Rare Metals, 2022, 41(12): 3976-3999. doi: 10.1007/s12598-022-02087-x
    [4]
    刘寿达, 刘娟娟, 刘潞潞, 等. 二维MXene负载MoO3/Ni-NiO异质结催化材料用于高效碱性电催化析氢反应[J]. 复合材料学报, 2023, 41(0): 1-11.

    LIU Shouda, LIU Juanjuan, LIU Lulu, et al. Two-dimensional MXene supported MoO3/NiO heterostructures for highperformance hydro-genevolution reaction at alkaline condition[J]. Acta Materiae Compositae Sinica, 2023, 41(0): 1-11 (in Chinese).
    [5]
    JIANG Y, XI H, LI L, et al. Mechanism of actio-n of the heterojunction structure of the photoca-talyst ZnO-g-C3N4@TiO2 and its application to the degradation of acetaminophen[J]. Journal of Photochemistry and Photobiology A: Chemi-stry, 2023, 445.
    [6]
    DING M, HAN C, YUAN Y, et al. Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis[J]. Solar RRL, 2021, 5(12).
    [7]
    SUN S B, WANG M W, CHANG X T, et al. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit[J]. Sensors and Actuators B: Chemical, 2020, 304.
    [8]
    WU X N, GONG Y J, YANG B J, et al. Fabrication of SnO2-TiO2-Ti3C2Tx hybrids with multipletype heterojunctions for enhanc-ed gas sensing performance at room tempera-ture[J]. Applied Surface Science, 2022, 581.
    [9]
    YANG J, GUI Y, WANG Y, et al. NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 476-484. doi: 10.1016/j.jiec.2022.11.070
    [10]
    LIU M, WANG Z, SONG P, et al. In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature[J]. Ceramics International, 2021, 47(16): 23028-23037. doi: 10.1016/j.ceramint.2021.05.016
    [11]
    ZHU X, CHANG X, TANG S, et al. Humidit-y Tolerant Chemiresistive Gas Sensors Based on Hydrophobic CeO2/SnO2 Heterostructure Films[J]. Acs Applied Materials&Interfaces 2022, 14 (22): 25680-25692.
    [12]
    YANG X, SALLES V, KANETI Y V, et al. Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning[J]. Sensors and Actuators B:Chemical, 2015, 220: 1112-1119. doi: 10.1016/j.snb.2015.05.121
    [13]
    HALIM J, COOK K M, NAGUIB M, et al. X-ray photoelectron spectroscopy of select mul-tilayered transition metal carbides (MXenes)[J]. Applied Surface Science, 2016, 362: 406-417. doi: 10.1016/j.apsusc.2015.11.089
    [14]
    HE T, LIU W, LV T, et al. MXene/SnO2 heterojunction based chemical gas sensors[J]. Sensors and Actuators B: Chemical, 2021, 329.
    [15]
    WU X, GONG Y, YANG B, et al. Fabrication of SnO2-TiO2-Ti3C2Tx hybrids with multiple-type heterojunctions for enhanced gas sensing performance at room temperature[J]. Applied Surface Science, 2022, 581.
    [16]
    李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-4878.

    LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878(in Chinese).
    [17]
    LI J, HAN K, HUANG J, et al. Polarized nucleation and efficient decomposition of Li2O2 for Ti2C MXene cathode catalyst under a mixed surface condition in lithium-oxygen batteries[J]. Energy Storage Materials, 2021, 35: 669-678. doi: 10.1016/j.ensm.2020.12.004
    [18]
    WU L, YUAN X, TANG Y, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physic- al sensing to emerging intelligent and bionic devices[J]. PhotoniX, 2023, 4(1).
    [19]
    Kim H M, Sohn S, Ahn J S. Transparent and superhydrophobicproperties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat CVD methods[J]. Surface and Coatings Technology, 2013, 228: S389 doi: 10.1016/j.surfcoat.2012.05.085
    [20]
    KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semi-onductors: Overview[J]. Sensors and Actuat-ors, B: Chemical, 2014, 192: 607-627.
    [21]
    PARK B H, LEE M H, KIM S B, et al. Evalu- ation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements[J]. Applied Surface Scie-nce, 2011, 257(8): 3709-3716. doi: 10.1016/j.apsusc.2010.11.116
    [22]
    LIU M, WANG S, JIANG L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2(7).
    [23]
    SIMONENKO E P, SIMONENKO N P, MO KRUSHIN A S, et al. Application of Titanium Carbide MXenes in Chemiresistive Gas Sens- ors[J]. Nanomaterials (Basel), 2023, 13(5).
    [24]
    PAUL R, DAS B, GHOSH R. Novel approa-ches towards design of metal oxide based heterostructures for room temperature gas sensor and its sensing mechanism: A recent p-rogress[J]. Journal of Alloys and Compounds, 2023, 941.
    [25]
    LEE E, VAHIDMOHAMMADI A, PRORO B C, et al. Room Temperature Gas Sensing of Two Dimensional Titanium Carbide (MXene)[J]. Acs Applied Materials& Interfaces, 2017, 9(42): 37184-37190.
    [26]
    KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio[J]. ACS Nano, 2018, 12(2): 986-993. doi: 10.1021/acsnano.7b07460
    [27]
    CHOI B, SHIN D, LEE H S, et al. Nanoparti-cle design and assembly for p-type metal oxide gas sensors[J]. Nanoscale, 2022, 14(9): 3387-3397. doi: 10.1039/D1NR07561F
    [28]
    DAS S, MOJUMDER S, SAHA D, et al. Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: A review focused on personalized healthcare[J]. Senso- rs and Actuators, B: Chemical, 2022, 352.
    [29]
    杨俊超, 潘勇, 秦墨林, 等. 金属氧化物半导体气敏传感器研究进展[J]. 化学传感器, 2022, 42(02): 10-18. doi: 10.3969/j.issn.1008-2298.2022.02.002

    YANG Junchao, PAN Yong, QIN Molin, et al. Research progress of metal oxide semiconduc- tor gas sensor[J]. Chemical Sensors, 2022, 42(02): 10-18(in Chinese). doi: 10.3969/j.issn.1008-2298.2022.02.002
    [30]
    LI N, JIANG Y, ZHOU C, et al. High Perform-ance Humidity Sensor Based on UrchinLike Composite of Ti3C2 MXene Derived TiO2 Nano wires[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38116-38125.
    [31]
    ZHANG R, DENG Z, CHANG J, et al. Bifunc-tional role of PDMS membrane in designing humiditytolerant H2S chemiresistors with high selectivity[J]. Chemical Communications, 2023, 59(12): 1689-1692. doi: 10.1039/D2CC05880D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (80) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return