Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
JI Wenbin, WANG Zihao, DAI Shijie, et al. Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3778-3790.
Citation: JI Wenbin, WANG Zihao, DAI Shijie, et al. Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3778-3790.

Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape

Funds:  National Natural Science Foundation of China (52005154); Science and Technological Innovation 2030-"New Generation Artificial Intelligence" Major Project of China (2021ZD0113100)
  • Received Date: 2023-09-28
  • Accepted Date: 2023-11-07
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-11-18
  • Publish Date: 2024-07-15
  • The structural parameters of TiB2-based ceramic tools with complex edge shapes were designed based on microwave sintering characteristics. The effect of tool design parameters on turning forces and temperatures when turning QT450 ductile cast iron was investigated using finite element simulation. For TiB2-based ceramic tools with complex cutting edges, the optimum tool front angle was found to be 5°, the optimum back angle was found to be 6° and the optimum tip radius was found to be 0.8mm. Complex edge-shaped TiB2-based ceramic tools were prepared by microwave sintering technology, and the effects of pressing pressure and holding time on the relative density, mechanical properties and microstructure of complex edge-shaped TiB2-based ceramic tools were investigated. The results show that the pressing pressure has a great influence on the abnormal growth of grains, and a reasonable pressing pressure can inhibit the abnormal growth of grains, improve the tool fracture mode, and then improve the tool performance. A reasonable holding time can make the white phase on the surface of the tool partition uniform and prevent aggregation, which is conducive to improving the fracture toughness of the tool. When the pressing pressure is 200MPa and the holding time is 4min, the dimensional shrinkage of each part of the tool is more average, the forming accuracy is higher, the densification is the highest, the microstructure is more uniform, the grain arrangement is more compact, and the overall mechanical properties are optimal.

     

  • loading
  • [1]
    黄小晓, 涂赣峰, 王术新, 等. TiB2涂层的制备及其应用研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1087-1099.

    HUANG Xiaoxiao, TU Ganfeng, WANG Shuxin, et al. Research progress on preparation and application of TiB2 coating[J]. Rare Metal Materials and Engineering, 2022, 51(3): 1087-1099(in Chinese).
    [2]
    SHUSTER L S, FOX-RABINOVICH G S, CHERTOVSKIKH S V. Influence of cutting conditions on the wear resistance of tools with a TiB2 coating during titanium alloy machining[J]. Journal of Friction and Wear, 2021, 42(6): 466-472. doi: 10.3103/S1068366621060118
    [3]
    张剑平, 张萌, 艾云龙. TiB2在原位反应制备铜基复合材料中的应用现状[J]. 特种铸造及有色合金, 2008, (7): 544-547,490.

    ZHANG Jianping, ZHANG Meng, AI Yunlong, et ai. Application status of TiB2 in in-situ reaction preparation of copper matrix composites[J]. Special Casting & Nonferrous Alloys, 2008, (7): 544-547,490(in Chinese).
    [4]
    GONG F, ZHAO J, LIU G, et al. Design and fabrication of TiB2-TiC-Al2O3 gradient composite ceramic tool materials reinforced by VC/Cr3C2 additives[J]. Ceramics International, 2021, 47(14): 20341-20351. doi: 10.1016/j.ceramint.2021.04.042
    [5]
    WU N, XUE F, YANG Q, et al. Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering[J]. Ceramics International, 2017, 43(1): 1394-1401. doi: 10.1016/j.ceramint.2016.10.100
    [6]
    YAN S R, LV Z J. FANG L J. Effects of SiC amount and morphology on the properties of TiB2-based composites sintered by hot-pressing[J]. Ceramics International, 2020, 46(11): 18813-18825. doi: 10.1016/j.ceramint.2020.04.199
    [7]
    刘元会, 石少杰, 曹宇航, 等. 热压烧结制备碳纤维/氧化铝陶瓷复合材料的负介电行为[J]. 复合材料学报, 2022, 39(08): 4085-4092. doi: 10.13801/j.cnki.fhclxb.20211012.003

    LIU Yuanhui, SHI Shaojie, CAO Yuhang, et al. Negative dielectric behavior of carbon fiber/alumina ceramic composites prepared by hot press sintering[J]. Acta Materiae Compositae Sinica, 2022, 39(08): 4085-4092(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211012.003
    [8]
    DING X, PAN K, LIU Z, et al. Effects of TiC particle size on microstructures and mechanical properties of B4C-TiB2 composites prepared by reactive hot-press sintering of TiC-B mixtures[J]. Ceramics International, 2020, 46(8): 10425-10430. doi: 10.1016/j.ceramint.2020.01.041
    [9]
    CHEN D, ZHANG K, ZENG J, et al. High-strength TiB2-B4C composite ceramics sintered by spark plasma sintering[J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 1949-1955. doi: 10.1111/ijac.14051
    [10]
    张新杰, 崔洪芝, 王明亮, 等. 放电等离子烧结Ni/TiB2-TiC复合材料微观组织及磨损性能[J]. 复合材料学报, 2018, 35(01): 158-167.

    ZHANG Xinjie, CUI Hongzhi, WANG Mingliang, et al. Microstructure and wear properties of Ni/TiB2-TiC composites prepared by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2018, 35(01): 158-167(in Chinese).
    [11]
    XU G F, ZHUANG H R, WU F Y, et al. Microwave reaction sintering of α-β-sialon composite ceramics - ScienceDirect[J]. Journal of the European Ceramic Society, 1997, 17(5): 675-680. doi: 10.1016/S0955-2219(96)00114-8
    [12]
    SINGHAL C, MURTAZA Q, PARVEJ. Microwave sintering of advanced composites materials: A Review[J]. Materials Today:Proceedings, 2018, 5(11+3): 24287-24298.
    [13]
    RAMESH S, ZULKIFLI N, TAN C Y, et al. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia[J]. Ceramics International, 2018, 44(8): 8922-8927. doi: 10.1016/j.ceramint.2018.02.086
    [14]
    AGRAWAL D, RAGULYA A, DEMIRSKYI D. Tough ceramics by microwave sintering of nanocrystalline titanium diboride ceramics[J]. Ceramics International, 2014, 40(1B): 1303-1310.
    [15]
    DEMIRSKYI D, CHENG J, AGRAWAL D, et al. Densification and grain growth during microwave sintering of titanium diboride[J]. Scripta Materialia, 2013, 69(8): 610-613. doi: 10.1016/j.scriptamat.2013.07.012
    [16]
    方一航, 夏伶勤, 陈光, 等. 成型压力对Ti(C, N)基金属陶瓷微观组织结构和力学性能的影响[J]. 材料与冶金学报, 2023, 22(3): 249-255.

    FANG Yihang, XIA Lingqin, CHEN Guang, et al. Effect of molding pressure on microstructure and mechanical properties of Ti(C, N) matrix ceramics[J]. Journal of Materials and Metallurgy, 2023, 22(3): 249-255(in Chinese).
    [17]
    ZONG H, ZHANG C, RU H, et al. Effect of forming pressure on microstructure and mechanical properties of B4C-SiC-Si ceramic composites[J]. Key Engineering Materials, 2018, 768(1): 152-158.
    [18]
    SARAVANAMURUGAN S, SUNDAR B S, PRANAV R S, et al. Optimization of cutting tool geometry and machining parameters in turning process[J]. Materials Today:Proceedings, 2021, 38(5): 3351-3357.
    [19]
    JI Junhao, YANG Qi, CHEN Peng, et al. An improved mathematical model of cutting temperature in end milling Al7050 based on the influence of tool geometry parameters and milling parameters[J]. Mathematical Problems in Engineering, 2021, 2021: 1-10
    [20]
    MANUEL N, BELTRãO D, GALVãO I, et al. Influence of tool geometry and process parameters on torque, temperature, and quality of friction stir welds in dissimilar al alloys[J]. Materials, 2021, 14(20): 6020. doi: 10.3390/ma14206020
    [21]
    胡波, 赵先锋, 史红艳, 等. 基于AdvantEdge切削工艺参数及刀具几何参数对切削力影响研究[J]. 组合机床与自动化加工技术, 2021, (7): 128-132. doi: 10.13462/j.cnki.mmtamt.2021.07.030

    HU Bo, ZHAO Xianfeng, SHI Hongyan, et al. Research on the influence of cutting process parameters and tool geometry parameters on cutting force based on AdvantEdge[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, (7): 128-132(in Chinese). doi: 10.13462/j.cnki.mmtamt.2021.07.030
    [22]
    殷增斌, 朱智勇, 王子祥, 等. 复杂刃形陶瓷刀具微波烧结技术研究[J]. 中国机械工程, 2022, 33(8): 899-907.

    YIN Zengbin, ZHU Zhiyong, WANG Zixiang, et al. Research on microwave sintering technology of complex blade ceramic cutte[J]. China Mechanical Engineering, 2022, 33(8): 899-907(in Chinese).
    [23]
    洪东波, 殷增斌, 陈为友, 等. 微波烧结复杂刃形SiAlON陶瓷刀具铣削GH4169高温合金性能研究[J]. 中国机械工程, 2023, 34(7); 770-779, 788.

    HONG Dongbo, YIN Zengbin, CHEN Weiyou, et al. Study on milling performance of GH4169 superalloy with complex blade SiAlON ceramic tool by microwave sintering[J]. China Mechanical Engineering, 2023, 34(7); 770-779, 788(in Chinese).
    [24]
    程德俊, 许丰, 张春燕, 等. 薄壁件铣削加工刀具几何参数优化[J]. 组合机床与自动化加工技术, 2020, (4): 130-3,8. doi: 10.13462/j.cnki.mmtamt.2020.04.030

    CHENG Dejun, XU Feng, ZHANG Chunyan, et al. Optimization of milling cutter parameters for machining thin-walled parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, (4): 130-3,8(in Chinese). doi: 10.13462/j.cnki.mmtamt.2020.04.030
    [25]
    TOKTAŞ A. Determination of Vickers indentation fracture toughness of boronised alloyed ductile iron[J]. Transactions of the Institute of Metal Finishing, 2019, 97(5): 271-276. doi: 10.1080/00202967.2019.1646458
    [26]
    达丽梅, 周后明, 周金虎, 等. Al2O3颗粒增韧TiB2-Ti(C(0.5), N(0.5))复合陶瓷刀具的力学性能及微观结构[J]. 材料科学与工程学报, 2022, 40(05): 785-790.

    DA Limei, ZHOU Houming, ZHOU Jinhu, et al. Mechanical properties and microstructure of TiB2-Ti(C(0.5), N(0.5)) composite ceramic tools toughened with Al2O3 particles[J]. Journal of Materials Science and Engineering, 2022, 40(05): 785-790(in Chinese).
    [27]
    张广森, 季文彬, 戴士杰, 等. 微波烧结Ti(C, N)-WC-Al2O3/Ti(C, N)-WC叠层陶瓷的微观结构和力学性能[J]. 硅酸盐学报, 2022, 50(12): 3212-3221.

    ZHANG Guangsen, JI Wenbin, DAI Shijie, et al. Structural Design And Mechanical Properties of Microwave Sintered Ti(C, N)-WC-Al2O3/Ti(C, N)-WC Laminated Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 50(12): 3212-3221(in Chinese).
    [28]
    王波, 王杨, 董中奇, 等. 压制压力对机械合金化Cu20Fe80合金微波烧结组织及性能的影响[J]. 粉末冶金工业, 2018, 28(3): 24-8.

    WANG Bo, WANG Yang, DONG Zhongqi, et al. Effect of compaction pressure on microstructure and properties of mechanically alloyed Cu20Fe80 alloy during microwave sintering[J]. Powder Metallurgy Industry, 2018, 28(3): 24-8(in Chinese).
    [29]
    Natalia D. L, Wijanarko R, Angela I, et al. Influence of compaction pressure on density, bending strength, and microstructures of Al2O3-SiC-ZrO2 ceramic matrix composites with Nb2O5 additives[J]. Materials Science Forum, 2018, 923(1): 61-65.
    [30]
    周后明, 陈皓月, 李神贵. 基于梯度结构的Al2O3/ZrO2陶瓷刀具材料的制备及其力学性能[J]. 中国机械工程, 2023, 34(10): 1199-1207. doi: 10.3969/j.issn.1004-132X.2023.10.009

    ZHOU Houming, CHEN Haoyue, LI Shengui. Preparation and mechanical properties of Al2O3/ZrO2 ceramic tool materials based on gradient structure[J]. China Mechanical Engineering, 2023, 34(10): 1199-1207(in Chinese). doi: 10.3969/j.issn.1004-132X.2023.10.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (140) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return