Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHAO Majuan, WANG Xiaomeng, WANG Ling, et al. Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3634-3646.
Citation: ZHAO Majuan, WANG Xiaomeng, WANG Ling, et al. Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3634-3646.

Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites

Funds:  173 Key Project of China (2022-JCJQ-ZD-067-11)
  • Received Date: 2023-10-09
  • Accepted Date: 2023-12-12
  • Rev Recd Date: 2023-11-13
  • Available Online: 2023-12-27
  • Publish Date: 2024-07-15
  • 2.5D woven SiCf/SiC composites were designed and prepared to meet the requirements of high temperature microwave absorbing structural composites, and the microwave absorbing properties were studied by combining experiment and simulation. The reflection loss of the material was measured by means of the bow method, and the geometrical parameters of the material were extracted by X-ray computed tomography (Micro-CT) to establish a full-thickness mesoscopic model. The reflection loss of the material was simulated and calculated on the CST electromagnetic simulation software, and compared with the experiment results. Based on the theory of equivalent electromagnetic parameters and field distribution map, the microwave-absorbing mechanism is analyzed, and the effects of geometric structure parameters, electromagnetic parameters, electromagnetic field polarization direction and incidence angle on the microwave-absorbing property of materials are studied.The experimental results show that the 2.5D woven SiCf/SiC composites prepared in this paper have an effective absorption bandwidth of 3 GHz in the frequency range of 1-18 GHz, and the maximum reflection loss reaches −17 dB at the absorption peak of 9.3 GHz, which is basically consistent with the simulation results.The composite absorbs electromagnetic microwave mainly through the way of electrical loss, and its good microwave absorption performance is the result of the synergistic effect of structural design and material characteristics. The overall material thickness and fiber dielectric constant are the key factors affecting the microwave absorption performance of 2.5D woven SiCf/SiC composites.

     

  • loading
  • [1]
    邢原铭, 杨涛, 王恩会等. SiC复合吸波材料的研究进展[J]. 复合材料学报, 1-12.

    XING Yuanming, YANG Tao WANG Enhui. Research progress of SiC composite microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 1-12(in Chinese).
    [2]
    FU Z, PANG A, LUO H, et al. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design[J]. Journal of Materials Research and Technology, 2022, 18-24
    [3]
    周旺. 2D-SiCf/SiC耐高温结构吸波材料力学性能研究[D]. 国防科学技术大学, 2008.

    ZHOU Wang. Mechanical Properties of 2D-SiCf/SiC High-temperature Structural Absorbing Materials[D]. National University of Defense Technology, 2008(in Chinese).
    [4]
    孟庆聪. 碳化硅陶瓷复合材料的制备及其吸波性能研究[D]. 天津大学, 2016.

    MENG Qincong. Studies on the Preparation and Microwave Absorbing Properties of Vitrified Bonded SiC Composites[D]. Tianjin University, 2016(in Chinese).
    [5]
    胡悦, 黄大庆, 史有强, 张昳, 何山, 丁鹤雁. 耐高温陶瓷基结构吸波复合材料研究进展[J]. 航空材料学报, 2019, 39(05): 1-12(in Chinese). doi: 10.11868/j.issn.1005-5053.2019.000139

    HU Yue, HUANG Daqing, SHI Youqiang, ZHANG Yi, HE Shan, DING Heyan. Research progress of high temperature resistant ceramic based structural wave absorbing composites[J]. Journal of Aeronautical Materials, 2019, 39(05): 1-12. doi: 10.11868/j.issn.1005-5053.2019.000139
    [6]
    刘海韬. 夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究[D]. 国防科学技术大学, 2010.

    LIU Haitao. Design, preparation and properties of the SiCf/SiC radar absorbing materials with sandwhich structures[D]. National University of Defense Technology, 2010(in Chinese).
    [7]
    刘文迪, 吕丽华. 三维机织吸波复合材料的研究进展[J]. 棉纺织技术, 2020, 48(10): 81-84. doi: 10.3969/j.issn.1001-7415.2020.10.019

    LIU Wendi, LV Lihua. Research progress of three-dimensional woven Microwave Absorbing Composites[J]. Cotton Textile Technology, 2020, 48(10): 81-84(in Chinese). doi: 10.3969/j.issn.1001-7415.2020.10.019
    [8]
    穆阳. SiCf/SiC高温结构吸波复合材料的制备及性能研究[D]. 西北工业大学, 2016.

    MU Yang. Preparation and Properties of SiCf/SiC High-temperature Structural Microwave Absorbing Composites[D]. Northwestern Polytechnical University, 2016(in Chinese).
    [9]
    樊威, 孟家光, 孙润军, 刘天骄, 宋文, 熊越. 混杂纤维增强结构隐身复合材料研究进展[J]. 纺织导报, 2017, (01): 66-68.

    FAN Wei, MENG Jiaguang, SUN Runjun, et al. Development in the Research of Hybrid Fiber Reinforced Structural Absorbing Composites[J]. China Textile Leader, 2017, (01): 66-68(in Chinese).
    [10]
    戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004.

    DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated Composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1997-2004(in Chinese).
    [11]
    MU Y, ZHOU W, HU Y, et al. Enhanced microwave absorbing properties of 2.5 D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process[J]. Journal of Alloys and Compounds, 2015, 637: 261-266. doi: 10.1016/j.jallcom.2015.03.031
    [12]
    HAN T, LUO R, CUI G, et al. Effect of fibre directionality on the microwave absorption properties of 3D braided SiCf/SiC composites[J]. Ceramics International, 2019, 45(6): 7797-7803. doi: 10.1016/j.ceramint.2019.01.085
    [13]
    吕丽华, 王荣蕊, 刘文迪等. 蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能[J]. 复合材料学报, 2023, 40(03): 1477-1483.

    LV Lihua, WANG Rongrui, LIU Wendi. et al. Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites[J]. Acta Materiae Compositae Sinica, 2023, 40(03): 1477-1483(in Chinese).
    [14]
    ZHANG H, ZHOU X, GAO Y, et al. Microwave absorption and bending properties of three-dimensional gradient honeycomb woven composites[J]. Polymer Composites, 2023, 44(2): 1201-1212. doi: 10.1002/pc.27164
    [15]
    CHEN N , WEI S , SHI B , et al. Investigating the electromagnetic wave-absorbing capacity and mechanical properties of flexible radar-absorbing knitted compound materials[J]. Journal of Industrial Textiles, 2021, 51(3): 343-361.
    [16]
    李丹丹. 2.5D碳/环氧复合材料电磁波传输性能研究[D]. 天津工业大学, 2016.

    LI Dandan. Study on electromagnetic wave transmission performance of 2.5D carbon/epoxy composites[D]. Tianjin Polytechnic University, 2016(in Chinese).
    [17]
    XIA Q, HAN Z, ZHANG Z, et al. High temperature microwave absorbing materials[J]. Journal of Materials Chemistry C, 2023, 54-59.
    [18]
    DU Z, LIANG J, CAI T, et al. Ultra-light planar meta-absorber with wideband and full-polarization properties[J]. Optics Express, 2021, 29(5): 6434-6444. doi: 10.1364/OE.416245
    [19]
    鞠文静, 周忠元, 蒋全兴等. 基于有限积分法的电磁兼容吸波材料反射率的建模仿真[J]. 东南大学学报(自然科学版), 2015, 45(03): 474-477. doi: 10.3969/j.issn.1001-0505.2015.03.011

    JU Wenjing, ZHOU Zhongyuan, JIANG Quanxin. et al. FIT-based simulation of reflectivity of absorbing materials for electromagnetic compatibility[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(03): 474-477(in Chinese). doi: 10.3969/j.issn.1001-0505.2015.03.011
    [20]
    苏钦城, 赵晓明, 李卫斌等. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(02): 155-160.

    SU Qincheng, ZHAO Xiaoming, LI Weibin. et al. Simulation analysis of woven fabric electromagnetic shielding effectiveness using finite integration technique[J]. Journal of Textile Research, 2016, 37(02): 155-160(in Chinese).
    [21]
    杨飙. 纤维复合微波吸收材料电磁建模与分析[D]. 华中科技大学, 2015.

    YANG Biao. Analysis and Electromagnetic Modeling of the Fiber Reinforced Microwave Absorbing Composites[D]. Huazhong University of Science and Technology, 2015(in Chinese).
    [22]
    孙娜, 徐阳. 基于法兰同轴测试原理的织物屏蔽效能仿真[J]. 丝绸, 2023, 60(05): 52-58. doi: 10.3969/j.issn.1001-7003.2023.05.007

    SUN Na, XU Yang. Simulation of Electromagnetic Shielding Effectiveness of Fabrics based on the Principle of Flange Coaxial Method Testing[J]. Journal of Silk, 2023, 60(05): 52-58(in Chinese). doi: 10.3969/j.issn.1001-7003.2023.05.007
    [23]
    YIN J, MA W, GAO Z, et al. A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics. Polymers 2022, 14(13), 2635.
    [24]
    WANG R, LIU W, ZHOU X, et al. Electromagnetic wave absorption and bending properties of double-layer honeycomb 3D woven composites: experiment and simulation[J]. The Journal of The Textile Institute, 2023: 1-11.
    [25]
    刘海韬, 程海峰, 王军, 唐耿平. SiCf/SiC复合材料界面相研究进展[J]. 材料导报, 2010, 24(01): 10-14+30.

    LIU Haitao, CHENG Haifeng, WANG Jun, TANG Genping. Study on the Interphase of the Conti nuous SiC Fiber Reinforced SiC Composites[J]. Materials Reports, 2010, 24(01): 10-14+30(in Chinese).
    [26]
    国防科学技术工业委员会. 雷达吸波材料反射率测试方法: GJB 2038-94[S]. 北京: 中国标准出版社, 1994.

    Commission of Science, Technology and Industry for National Defense (COSTIND) commission. Methods for measurement of reflectivity of radar absorbing material: GJB 2038-94 [S]. Beijing: China Standard Press, 1994 (in Chinese).
    [27]
    YAO H, YANG J, LI H, et al. Optimal design of multilayer radar absorbing materials: a simulation-optimization approach[J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 43. doi: 10.1007/s42114-023-00626-3
    [28]
    SMITH D R , VIER D C, KOSCHNY Th, et al . Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical review. E, 2005, 71(3 Pt 2B): 036617.
    [29]
    CHEN Z , ZHANG Y , WANG Z . Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2023.
    [30]
    苏钦城. 电磁波在织物中传播的正反演仿真研究[D]. 天津工业大学, 2016.

    SU Qincheng. Forward and inverse study of electromagnetic wave propagation in fabric[D]. Tianjin Polytechnic University, 2016(in Chinese).
    [31]
    ZHAO B, GUO XQ, Zhao WY, et al. Yolk-Shell Ni@SnO2 Composites with a Designable Interspace to Improve the Electromagnetic Wave Absorption Properties[J]. ACS applied materials& interfaces, 2016, 8(42): 28917-28925.
    [32]
    莫红松, 吕潇, 李光, 等. 复合材料中碳纤维的铺设方式对吸波性能的影响[A]. 第六届中国功能材料及其应用学术会议论文集(8)[C], 湖北武汉: 中国仪器仪表学会仪表材料分会, 等, 2007: 3063-3066.

    MO Hongsong, LV Xiao, Li Guang, et al . Effect of laying method of carbon fiber on wave absorbing properties of composite materials [A]. Proceedings of the 6th China Conference on Functional Materials and Their Applications (8) [C], Wuhan, Hubei: Branch of Instrumentation Materials of Chinese Society of Instrumentation, et al. 2007: 3063-3066 (in Chinese).
    [33]
    WANG B C, WEI J Q, YANG Y. Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 2011, 323: 1101~1103.
    [34]
    刘海韬, 程海峰, 王军等. 高温结构吸波材料综述[J]. 材料导报, 2009, 23(19): 24-27. doi: 10.3321/j.issn:1005-023X.2009.19.006

    LIU Haitao, CHENG Haifeng, WANG Jun, et al. Review on High-temperat ure Struct ural Radar Absorbing Materials[J]. Materials Reports, 2009, 23(19): 24-27 (in Chinese). doi: 10.3321/j.issn:1005-023X.2009.19.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (165) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return