Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
YU Meng, LIN Tao, YIN Xuefeng, et al. Application research of multi-functional sensor based on cellulose nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3483-3493.
Citation: YU Meng, LIN Tao, YIN Xuefeng, et al. Application research of multi-functional sensor based on cellulose nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3483-3493.

Application research of multi-functional sensor based on cellulose nanocrystals

Funds:  Doctoral research start-up Fund project of Shaanxi University of Science and Technology (2018BJ-26)
  • Received Date: 2023-11-03
  • Accepted Date: 2023-12-06
  • Rev Recd Date: 2023-11-28
  • Available Online: 2023-12-21
  • Publish Date: 2024-07-15
  • Cellulose Nanocrystals (CNC) are nanomaterials with excellent mechanical properties, optical properties and surface chemical properties, which have attracted wide attention from researchers in recent years. CNC-based sensors have a single, double and multiple response to external environmental stimuli, such as humidity, gas, pH, solvent, temperature, light and other drive sensing, which makes it in the information encryption, health detection, food, environmental monitoring, energy storage, wearable and other fields show great application potential. In this paper, the key characteristics of CNC are briefly introduced, and the important application development and research mechanism of multi-functional sensors based on CNC are analyzed. Finally, the main problems and challenges in the preparation process of CNC-based sensor materials are summarized, and the reference is provided for improving their performance and functional innovative applications.

     

  • loading
  • [1]
    GOMRI C, CRETIN M, SEMSARILAR M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review[J]. Carbohydrate Polymers, 2022, 294: 119790. doi: 10.1016/j.carbpol.2022.119790
    [2]
    DUAN C, CHENG Z, WANG B, et al. Chiral photonic liquid crystal films derived from cellulose nanocrystals[J]. Small, 2021, 17(30): 2007306. doi: 10.1002/smll.202007306
    [3]
    LIU B R, CHENG L, YUAN Y, et al. Liquid-crystalline assembly of spherical cellulose nanocrystals[J]. International Journal of Biological Macromolecules, 2023, 242: 124738. doi: 10.1016/j.ijbiomac.2023.124738
    [4]
    GIESE M, SPENGLER M. Cellulose nanocrystals in nanoarchitectonics-towards photonic functional materials[J]. Molecular Systems Design & Engineering, 2019, 4(1): 29-48.
    [5]
    D’ACIERNO F, BAKRANI K, HAMAD W Y, et al. Tuning the Optical and Thermal Properties of Both Iridescent and Colorless Cellulose Nanocrystal Films[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8715-8724.
    [6]
    SUROV O V, AFINEEVSKII A V, VORONOVA M I. Sulfuric acid alcoholysis as a way to obtain cellulose nanocrystals[J]. Cellulose, 2023: 1-14.
    [7]
    HE J T, LI N, BIAN K Q, et al. Optically active polyaniline film based on cellulose nanocrystals[J]. Carbohydrate Polymers, 2019, 208: 398-403. doi: 10.1016/j.carbpol.2018.12.091
    [8]
    CASADO U, MUCCI V L, ARANGUREN M I. Cellulose nanocrystals suspensions: Liquid crystal anisotropy, rheology and films iridescence[J]. Carbohydrate Polymers, 2021, 261: 117848. doi: 10.1016/j.carbpol.2021.117848
    [9]
    QU D, ROJAS O J, WEI B, et al. Responsive Chiral Photonic Cellulose Nanocrystal Materials[J]. Advanced Optical Materials, 2022, 10(22): 2201201. doi: 10.1002/adom.202201201
    [10]
    XIONG R, YU S T, SMITH M J, et al. Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials[J]. ACS nano, 2019, 13(8): 9074-9081. doi: 10.1021/acsnano.9b03305
    [11]
    ZHANG F S, LI Q Y, WANG C L, et al. Multimodal, Convertible, and Chiral Optical Films for Anti-Counterfeiting Labels[J]. Advanced Functional Materials, 2022, 32(33): 2204487. doi: 10.1002/adfm.202204487
    [12]
    FAN J, XU M C, XU Y T, et al. A visible multi-response electrochemical sensor based on cellulose nanocrystals[J]. Chemical Engineering Journal, 2023, 457: 141175. doi: 10.1016/j.cej.2022.141175
    [13]
    MUGO S M, LU W H, ROBERTSON S. A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat[J]. Biosensors, 2022, 12(10): 854. doi: 10.3390/bios12100854
    [14]
    KHALILZADEH M A, TAJIK S, BEITOLLAHI H, et al. Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@ CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4219-4228.
    [15]
    BABAEI-GHAZVINI A, ACHARYA B, KORBER D R. Multilayer photonic films based on interlocked chiral-nematic cellulose nanocrystals in starch/chitosan[J]. Carbohydrate Polymers, 2022, 275: 118709. doi: 10.1016/j.carbpol.2021.118709
    [16]
    LI S J, CHEN H B, LIU X Y, et al. Nanocellulose as a promising substrate for advanced sensors and their applications[J]. International Journal of Biological Macromolecules, 2022, 218: 473-487. doi: 10.1016/j.ijbiomac.2022.07.124
    [17]
    RAMEZANI M G, GOLCHINFAR B. Mechanical properties of cellulose nanocrystal (CNC) bundles: Coarse-grained molecular dynamic simulation[J]. Journal of Composites Science, 2019, 3(2): 57. doi: 10.3390/jcs3020057
    [18]
    RASHID A B, HOQUE M E, KABIR N, et al. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals[J]. Polymers, 2023, 15(20): 4070. doi: 10.3390/polym15204070
    [19]
    HABIBI Y, GOFFIN A L, SCHILTZ N, et al. Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization[J]. Journal of Materials Chemistry, 2008, 18(41): 5002-5010. doi: 10.1039/b809212e
    [20]
    卿彦, 王礼军, 吴义强, 等. 纤维素纳米晶体胆甾相液晶形成与应用[J]. 林业科学, 2019, 55(4): 152-159. doi: 10.11707/j.1001-7488.20190416

    QING Yan, WANG Lijun, WU Yiqing, et al. Formation and application of cholesteric liquid crystals in cellulose nanocrystals[J]. Scientia Silvae Sinicae, 2019, 55(4): 152-159(in Chinese). doi: 10.11707/j.1001-7488.20190416
    [21]
    林涛, 王乐, 魏潇瑶, 等. 基于纤维素纳米晶体的比色传感器研究进展[J]. 中国造纸, 2022, 41(6): 95-102. doi: 10.11980/j.issn.0254-508X.2022.06.015

    LIN Tao, WANG Le, WEI Xiaoyao, et al. Research progress of colorimetric sensors based on cellulose nanocrystals[J]. China Pulp & Paper, 2022, 41(6): 95-102(in Chinese). doi: 10.11980/j.issn.0254-508X.2022.06.015
    [22]
    TAO J, LI J, YU X, et al. Lateral gradient ambidextrous optical reflection in self-organized left-handed chiral nematic cellulose nanocrystals films[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 608965. doi: 10.3389/fbioe.2021.608965
    [23]
    BABAEI-GHAZVINI A, ACHARYA B. Humidity-responsive photonic films and coatings based on tuned cellulose nanocrystals/glycerol/polyethylene glycol[J]. Polymers, 2021, 13(21): 3695. doi: 10.3390/polym13213695
    [24]
    CHEN H H, HOU A Q, ZHENG C W, et al. Light-and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24505-24511.
    [25]
    WEI X Y, LIN T, WANG L, et al. Research on deep eutectic solvents for the construction of humidity-responsive cellulose nanocrystal composite films[J]. International Journal of Biological Macromolecules, 2023, 235: 123805. doi: 10.1016/j.ijbiomac.2023.123805
    [26]
    MENG Y H, HE Z B, DONG C H, et al. Multi-stimuli-responsive photonics films based on chiral nematic cellulose nanocrystals[J]. Carbohydrate Polymers, 2022, 277: 118756. doi: 10.1016/j.carbpol.2021.118756
    [27]
    VERMA C, CHHAJED M, SINGH S, et al. Bioinspired structural color sensors based on self-assembled cellulose nanocrystal/citric acid to distinguish organic solvents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 655: 130206. doi: 10.1016/j.colsurfa.2022.130206
    [28]
    FENG K, WEI G D, LIU Y B, et al. Cellulose Nanocrystals Chiral Nematic Coating with Reversible Multiple-Stimuli-Responsive Coloration[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8374-8385.
    [29]
    ZHAO H D, DAI X N, YUAN Z W, et al. Iridescent chiral nematic papers based on cellulose nanocrystals with multiple optical responses for patterned coatings[J]. Carbohydrate Polymers, 2022, 289: 119461. doi: 10.1016/j.carbpol.2022.119461
    [30]
    SONG W, LEE J K, GONG M S, et al. Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10353-10361.
    [31]
    HE Y D, ZHANG Z L, XUE J, et al. Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5805-5811.
    [32]
    GE W N, ZHANG F S, WANG D D, et al. Highly Tough, Stretchable, and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Mechanochromism and Actuator Properties[J]. Small, 2022, 18(12): 2107105. doi: 10.1002/smll.202107105
    [33]
    VERMA C, CHHAJED M, SINGH S, et al. Cellulose nanocrystals for environment-friendly self-assembled stimuli doped multisensing photonics[J]. ACS Applied Polymer Materials, 2022, 4(6): 4047-4068. doi: 10.1021/acsapm.2c00061
    [34]
    CHANG T, WANG B C, YUAN D, et al. Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification[J]. Chemical Engineering Journal, 2022, 446: 136630. doi: 10.1016/j.cej.2022.136630
    [35]
    TEODORO K B R, SANFELICE R C, MIGLIORINI F L, et al. A review on the role and performance of cellulose nanomaterials in sensors[J]. ACS Sensors, 2021, 6(7): 2473-2496. doi: 10.1021/acssensors.1c00473
    [36]
    XU H, LIU X R, QIN J H, et al. Nitrogen-doped hierarchical porous carbon nanomaterial from cellulose nanocrystals for voltammetric determination of ascorbic acid[J]. Microchemical Journal, 2021, 168: 106494. doi: 10.1016/j.microc.2021.106494
    [37]
    冉琳琳, 谢帆钰, 王封丹, 等. 纳米纤维素的制备及应用研究进展[J]. 广州化工, 2021, 49(6): 1-5+10. doi: 10.3969/j.issn.1001-9677.2021.06.002

    RAN Linlin, XIE Fanyu, WANG Fengdan, et al. Progress in preparation and application of nanocellulose[J]. Guangzhou Chemical Industry, 2021, 49(6): 1-5+10(in Chinese). doi: 10.3969/j.issn.1001-9677.2021.06.002
    [38]
    NGUYEN L H, NAFICY S, CHANDRAWATI R, et al. Nanocellulose for sensing applications[J]. Advanced Materials Interfaces, 2019, 6(18): 1900424. doi: 10.1002/admi.201900424
    [39]
    FENG K, LU M F, WEI G D, et al. Cellulose Nanocrystals/Poly (3, 4-ethylenedioxythiophene) Photonic Crystal Composites with Electrochromic Properties for Smart Windows, Displays, and Anticounterfeiting/Encryption Applications[J]. ACS Applied Nano Materials, 2022, 5(8): 10848-10859. doi: 10.1021/acsanm.2c02160
    [40]
    SHI Z X, ZHAO W W, ZHANG Y, et al. Triply Hiding Optical Information via Excitation-Dependent Allochroic Photoluminescence Based on Cellulose Derivates[J]. Small, 2023, 19(3): 2205697. doi: 10.1002/smll.202205697
    [41]
    ZHAO G M, HUANG Y P, MEI C T, et al. Chiral nematic coatings based on cellulose nanocrystals as a multiplexing platform for humidity sensing and dual anticounterfeiting[J]. Small, 2021, 17(50): 2103936. doi: 10.1002/smll.202103936
    [42]
    XUE R, ZHAO H, AN Z W, et al. Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability[J]. ACS Nano, 2023, 17(6): 5653-5662. doi: 10.1021/acsnano.2c11809
    [43]
    SUN W, WANG J, HE M. Anisotropic cellulose nanocrystal composite hydrogel for multiple responses and information encryption[J]. Carbohydrate Polymers, 2023, 303: 120446. doi: 10.1016/j.carbpol.2022.120446
    [44]
    LIU L, TANGUY N R, Yan N, et al. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress[J]. Carbohydrate Polymers, 2022, 280: 119005. doi: 10.1016/j.carbpol.2021.119005
    [45]
    ZHOU Y, LU C H, LU Z X, et al. Chiroptical Nanocellulose Bio-Labels for Independent Multi-Channel Optical Encryption[J]. Small, 2023: 2303064.
    [46]
    LONG W, OUYANG H, HU X, et al. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials[J]. International Journal of Biological Macromolecules, 2021, 186: 591-615. doi: 10.1016/j.ijbiomac.2021.07.066
    [47]
    ABD MANAN F A, HONG W W, ABDULLAH J, et al. Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination[J]. Materials Science and Engineering:C, 2019, 99: 37-46. doi: 10.1016/j.msec.2019.01.082
    [48]
    TRACEY C T, TORLOPOV M A, MARTAKOV I S, et al. Hybrid cellulose nanocrystal/magnetite glucose biosensors[J]. Carbohydrate Polymers, 2020, 247: 116704. doi: 10.1016/j.carbpol.2020.116704
    [49]
    ESMAEILI C, ABDI M M, MATHEW A P, et al. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose[J]. Sensors, 2015, 15(10): 24681-24697. doi: 10.3390/s151024681
    [50]
    FENG K, DONG C L, GAO Y L, et al. A green and iridescent composite of cellulose nanocrystals with wide solvent resistance and strong mechanical properties[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(19): 6764-6775.
    [51]
    HU C Y, BAI L, SONG F, et al. Cellulose nanocrystal and β-cyclodextrin chiral nematic composite films as selective sensor for methanol discrimination[J]. Carbohydrate Polymers, 2022, 296: 119929. doi: 10.1016/j.carbpol.2022.119929
    [52]
    CHEN J, LING Z, WANG X Y, et al. All bio-based chiral nematic cellulose nanocrystals films under supramolecular tuning by chitosan/deacetylated chitin nanofibers for reversible multi-response and sensor application[J]. Chemical Engineering Journal, 2023, 466: 143148. doi: 10.1016/j.cej.2023.143148
    [53]
    MENG Y H, LUO H Z, DONG C H, et al. Hydroxypropyl guar/cellulose nanocrystal film with ionic liquid and anthocyanin for real-time and visual detection of NH3[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9731-9741.
    [54]
    LEI Y L, YAO Q Y, JIN Z H, et al. Intelligent films based on pectin, sodium alginate, cellulose nanocrystals, and anthocyanins for monitoring food freshness[J]. Food Chemistry, 2023, 404: 134528. doi: 10.1016/j.foodchem.2022.134528
    [55]
    DUAN C L, WANG B, LI J P, et al. Multidimensional dynamic regulation of cellulose coloration for digital recognition and humidity response[J]. International Journal of Biological Macromolecules, 2023, 234: 123597. doi: 10.1016/j.ijbiomac.2023.123597
    [56]
    ZHAO G, ZHANG Y, ZHAI S C, et al. Dual response of photonic films with chiral nematic cellulose nanocrystals: Humidity and formaldehyde[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17833-17844.
    [57]
    ANDREW L J, GILLMAN E R, WALTERS C M, et al. Multi-Responsive Supercapacitors from Chiral Nematic Cellulose Nanocrystal-Based Activated Carbon Aerogels[J]. Small, 2023: 2301947.
    [58]
    WANG Z S, MA Z X, WANG S B, et al. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for antifreezing and antibacterial wearable sensors[J]. Carbohydrate Polymers, 2022, 298: 120128. doi: 10.1016/j.carbpol.2022.120128
    [59]
    NASSERI R, BOUZAEI N, HUANG J, et al. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics[J]. Nature Communications, 2023, 14(1): 6108. doi: 10.1038/s41467-023-41874-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (196) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return