Turn off MathJax
Article Contents
DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica.
Citation: DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica.

Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis

  • Received Date: 2023-10-11
  • Accepted Date: 2023-11-29
  • Rev Recd Date: 2023-11-09
  • Available Online: 2023-12-18
  • In this paper, the self-consistent clustering analysis (SCA) method was used to investigate the progressive damage behavior of 2D C/SiC under uniaxial compression load. The SCA method clusters the grid elements by strain concentration tensor, which greatly reduces the degree of freedom of the model and improves the computational efficiency of the model without significantly reducing the computational accuracy. The whole method consists of two stages: offline and online. In the offline stage, the k-means algorithm was used to decompose and cluster the high-fidelity composite unit cells and calculate the interaction tensor between different clusters, and finally the reduced-order model was generated. At the online stage, the mechanical response was obtained by solving the discrete Lippmann-Schwinger equations based on the reduced-order model. The SCA method was applied to predict the compressive strength of 2D C/SiC. When the total number of clusters is 64, compared with the experiment, the calculation accuracy of the compressive strength solution is reduced by 1% compared with the traditional finite element method, but the overall calculation efficiency is improved by 34 times. When the clustering time spent in the offline stage is not considered, that is, the meso-structure of the material is known in advance to solve its mechanical behavior, the time of one-time online calculation is only 6s, and the calculation efficiency is 104 times higher than that of the traditional finite element method. It has broad application prospects in the fields of rapid design of structural performance and rapid prediction of structural state.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return