Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LI Yang, ZHENG Xinmei, MEI Xin, et al. Research progress on the regulation of filler particle alignment during physics-assisted 3D printing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3393-3407.
Citation: LI Yang, ZHENG Xinmei, MEI Xin, et al. Research progress on the regulation of filler particle alignment during physics-assisted 3D printing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3393-3407.

Research progress on the regulation of filler particle alignment during physics-assisted 3D printing

Funds:  Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (sklpme2023-3-9); Sichuan Science and Technology Program (2022YFG0366)
  • Received Date: 2023-11-20
  • Accepted Date: 2024-01-20
  • Rev Recd Date: 2024-01-08
  • Available Online: 2024-02-28
  • Publish Date: 2024-07-15
  • 3D printing is a bottom-up, layer-by-layer material additive manufacturing technique. Currently, 3D printing is evolving from prototype manufacturing towards high-performance and functionalization, placing higher demands on the control of printing materials and processes. The orderly arrangement of nanoparticles in 3D printing materials is crucial for enhancing the performance of printed components, yet effectively controlling the orientation of nanoparticles remains challenging. Incorporating physical fields (magnetic, electric, and ultrasonic fields) into the 3D printing process emerges as one of the effective strategies for precise microstructure manipulation of printed items. This approach not only endows the printed components with specific functions but also provides new insights for fabricating multi-scale and multi-responsive structured components. Therefore, physical field-assisted 3D printing has become a research hotspot in recent years. This article begins by briefly describing the types and characteristics of 3D printing technology, emphasizing the importance of physical field assistance in controlling the orientation of nanoparticles. Subsequently, it reviews and summarizes the fundamental principles, material requirements, applications, and performance of physical field-assisted 3D printing in controlling nanoparticle orientation. Finally, the problems and challenges existing in controlling the orientation of filler particles in physical field-assisted 3D printing are summarized, and its future development direction is prospected.

     

  • loading
  • [1]
    卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(01): 19.

    Lu Bingheng. Additive Manufacturing Technology - Current Status and Future [J] China Mechanical Engineering, 2020, 2031 (2001): 2019(in Chinese).
    [2]
    JANDYAL A, CHATURVEDI I, WAZIR I, et al. 3D printing–A review of processes, materials and applications in industry 4.0[J]. Sustainable Operations and Computers, 2022, 3: 33-42. doi: 10.1016/j.susoc.2021.09.004
    [3]
    MARTíNEZ-GARCíA A, MONZóN M, PAZ R. Standards for additive manufacturing technologies: Structure and impact [M]. Additive manufacturing. Elsevier. 2021: 395-408.
    [4]
    LIU J, LI W, GUO Y, et al. Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing[J]. Composites Part A:Applied Science and Manufacturing, 2019, 120: 140-146. doi: 10.1016/j.compositesa.2019.02.026
    [5]
    HAN R, YANG Q, WANG Z, et al. 3D printing-enabled self-assembling β-nucleating agent alignment: Structural evolution and mechanical performances[J]. Polymer, 2022, 246: 124736. doi: 10.1016/j.polymer.2022.124736
    [6]
    LIN Z, LIU Y, RAGHAVAN S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation[J]. ACS applied materials & interfaces, 2013, 5(15): 7633-7640.
    [7]
    程戎, 雷国莉, 王凌峰, 等. 高温高饱和磁通密度软磁铁氧体研究进展[J]. 中国陶瓷, 2018, 54(12): 1-6.

    Cheng Rong, Lei Guoli, Wang Lingfeng, et al. Research progress on high-temperature and high saturation magnetic flux density soft magnetic ferrite [J] Chinese Ceramics, 2018, 2054 (2012): 2011-2016(in Chinese).
    [8]
    LI X, SHAN W, YANG Y, et al. Limpet tooth-inspired painless microneedles fabricated by magnetic field-assisted 3D printing[J]. Advanced Functional Materials, 2021, 31(5): 2003725. doi: 10.1002/adfm.202003725
    [9]
    MARTIN J J, FIORE B E, ERB R M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing[J]. Nature communications, 2015, 6(1): 8641. doi: 10.1038/ncomms9641
    [10]
    KOKKINIS D, SCHAFFNER M, STUDART A R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nature communications, 2015, 6(1): 8643. doi: 10.1038/ncomms9643
    [11]
    HENDERSON L, ZAMORA S, AHMED T N, et al. Altering magnetic properties of iron filament PLA using magnetic field assisted additive manufacturing (MFAAM)[J]. Journal of Magnetism and Magnetic Materials, 2021, 538: 168320. doi: 10.1016/j.jmmm.2021.168320
    [12]
    KAMYSHNY A, MAGDASSI S. Conductive nanomaterials for printed electronics[J]. Small, 2014, 10(17): 3515-3535. doi: 10.1002/smll.201303000
    [13]
    孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.

    Sun Yajie, Chang Yunlong Research progress on magnetic arc welding process and new technologies [J] Material Guide, 22020, 21134 (21121): 21155-21165(in Chinese).
    [14]
    HENDERSON L, ZAMORA S, AHMED T N, et al. Altering magnetic properties of iron filament PLA using magnetic field assisted additive manufacturing (MFAAM)[J]. Journal of Magnetism and Magnetic Materials, 2021, 538.
    [15]
    LI X, SHAN W, YANG Y, et al. Limpet Tooth-Inspired Painless Microneedles Fabricated by Magnetic Field-Assisted 3D Printing[J]. Advanced Functional Materials, 2020, 31(5).
    [16]
    POHL H A, HAWK I. Separation of living and dead cells by dielectrophoresis[J]. Science, 1966, 152(3722): 647-649. doi: 10.1126/science.152.3722.647.b
    [17]
    CRANE J S, POHL H A. Theoretical models of cellular dielectrophoresis[J]. Journal of theoretical biology, 1972, 37(1): 15-41. doi: 10.1016/0022-5193(72)90113-0
    [18]
    GOH G L, AGARWALA S, YEONG W Y. Directed and on-demand alignment of carbon nanotube: a review toward 3D printing of electronics[J]. Advanced Materials Interfaces, 2019, 6(4): 1801318. doi: 10.1002/admi.201801318
    [19]
    WANG Z, CHENG J, HU R, et al. An approach combining additive manufacturing and dielectrophoresis for 3D-structured flexible lead-free piezoelectric composites for electromechanical energy conversion[J]. Journal of Materials Chemistry A, 2021, 9(47): 26767-26776. doi: 10.1039/D1TA07475J
    [20]
    KAMYSHNY A, MAGDASSI S. Conductive nanomaterials for 2D and 3D printed flexible electronics[J]. Chemical Society Reviews, 2019, 48(6): 1712-1740. doi: 10.1039/C8CS00738A
    [21]
    JAVIDI R, ZAND M M, DASTANI K. Dielectrophoretic interaction of two particles in a uniform electric field[J]. Microsystem Technologies, 2019, 25(7): 2699-2711. doi: 10.1007/s00542-018-4242-2
    [22]
    YANG Y, CHEN Z, SONG X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing[J]. Advanced materials, 2017, 29(11): 1605750. doi: 10.1002/adma.201605750
    [23]
    YANG Y, LI X, CHU M, et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability[J]. Science advances, 2019, 5(4): eaau9490. doi: 10.1126/sciadv.aau9490
    [24]
    ZHANG G, SONG D, JIANG J, et al. Electrically assisted continuous vat photopolymerization 3D printing for fabricating high-performance ordered graphene/polymer composites[J]. Composites Part B: Engineering, 2022: 110449.
    [25]
    KRISNADI F, NGUYEN L L, MA J, et al. Directed Assembly of Liquid Metal–Elastomer Conductors for Stretchable and Self-Healing Electronics[J]. Advanced Materials, 2020, 32(30): 2001642. doi: 10.1002/adma.202001642
    [26]
    ZHANG B, HE J, LI X, et al. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D[J]. Nanoscale, 2016, 8(34): 15376-15388. doi: 10.1039/C6NR04106J
    [27]
    LEE H, SEONG B, KIM J, et al. Direct Alignment and Patterning of Silver Nanowires by Electrohydrodynamic Jet Printing[J]. Small, 2014, 10(19): 3918-3922. doi: 10.1002/smll.201400936
    [28]
    KIM K, BAE J, NOH S H, et al. Direct Writing and Aligning of Small-Molecule Organic Semiconductor Crystals via “Dragging Mode” Electrohydrodynamic Jet Printing for Flexible Organic Field-Effect Transistor Arrays[J]. The Journal of Physical Chemistry Letters, 2017, 8(22): 5492-5500. doi: 10.1021/acs.jpclett.7b02590
    [29]
    LIASHENKO I, ROSELL-LLOMPART J, CABOT A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection[J]. Nature Communications, 2020, 11(1).
    [30]
    COURTNEY C. R. P. , ONG C. -K. , DRINKWATER B. W. , et al. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves[J]. Proc R Soc A468337–360, 2012.
    [31]
    TUZIUTI T, MASUDA Y, YASUI K, et al. Two-dimensional patterning of inorganic particles in resin using ultrasound-induced plate vibration[J]. Japanese Journal of Applied Physics, 2011, 2011,50(8R): 088006.
    [32]
    CALEAP M, DRINKWATER B W. Acoustically trapped colloidal crystals that are reconfigurable in real time[J]. Proceedings of the National Academy of Sciences, 2014, 111(17): 6226-6230. doi: 10.1073/pnas.1323048111
    [33]
    LLEWELLYN-JONES T M, DRINKWATER B W, TRASK R S. 3D printed components with ultrasonically arranged microscale structure[J]. Smart Materials and Structures, 2016, 25(2).
    [34]
    NIENDORF K, RAEYMAEKERS B. Quantifying macro- and microscale alignment of carbon microfibers in polymer-matrix composite materials fabricated using ultrasound directed self-assembly and 3D-printing[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129.
    [35]
    ZHOU X, REN L, LIU Q, et al. Advances in Field-Assisted 3D Printing of Bio-Inspired Composites: From Bioprototyping to Manufacturing[J]. Macromolecular Bioscience, 2021, 22(3).
    [36]
    GREENHALL J, RAEYMAEKERS B. 3D Printing Macroscale Engineered Materials Using Ultrasound Directed Self-Assembly and Stereolithography[J]. Advanced Materials Technologies, 2017, 2(9).
    [37]
    MITRI F G, GARZON F H, SINHA D N. Characterization of acoustically engineered polymer nanocomposite metamaterials using x-ray microcomputed tomography[J]. Review of Scientific Instruments, 2011: 82(83).
    [38]
    SAITO M, IMANISHI Y. Host-guest composites containing ultrasonically arranged particles[J]. Journal of materials science, 2000, 35: 2373-2377. doi: 10.1023/A:1004745927648
    [39]
    COLLINO R R, RAY T R, FLEMING R C, et al. Deposition of ordered two-phase materials using microfluidic print nozzles with acoustic focusing[J]. Extreme Mechanics Letters, 2016, 8: 96-106. doi: 10.1016/j.eml.2016.04.003
    [40]
    WADSWORTH P, NELSON I, PORTER D L, et al. Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing[J]. Materials & Design, 2020, 185.
    [41]
    ASIF S, CHANSORIA P, SHIRWAIKER R. Ultrasound-assisted vat photopolymerization 3D printing of preferentially organized carbon fiber reinforced polymer composites[J]. Journal of Manufacturing Processes, 2020, 56: 1340-1343. doi: 10.1016/j.jmapro.2020.04.029
    [42]
    GE Q, LI Z, WANG Z, et al. Projection micro stereolithography based 3D printing and its applications[J]. International Journal of Extreme Manufacturing, 2020, 2(2).
    [43]
    WEI C, ZHANG Z Z, CHENG D X, et al. An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales[J]. International Journal Of Extreme Manufacturing, 2021, 3(1).
    [44]
    XUE F K, BOUDAOUD H, ROBIN G, et al. Enhancing vibration damping properties of additively manufactured viscoelastic structures through process parameter optimization[J]. Mechanics Of Advanced Materials And Structures, 2023.
    [45]
    PUTRA N E, MIRZAALI M J, APACHITEI I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution[J]. Acta Biomaterialia, 2020, 109: 1-20. doi: 10.1016/j.actbio.2020.03.037
    [46]
    BANDYOPADHYAY A, HEER B. Additive manufacturing of multi-material structures[J]. Materials Science & Engineering R-Reports, 2018, 129: 1-16.
    [47]
    NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B:Engineering, 2018, 143: 172-196. doi: 10.1016/j.compositesb.2018.02.012
    [48]
    COOGAN T J, KAZMER D O. Prediction of interlayer strength in material extrusion additive manufacturing[J]. Additive Manufacturing, 2020, 35.
    [49]
    OMAIRI A, ISMAIL Z H. Towards Machine Learning for Error Compensation in Additive Manufacturing[J]. Applied Sciences-Basel, 2021, 11(5).
    [50]
    WANG Y B, ZHENG P, PENG T, et al. Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives[J]. Science China-Technological Sciences, 2020, 63(9): 1600-1611. doi: 10.1007/s11431-020-1581-2
    [51]
    BI K M, LIN D, LIAO Y L, et al. Additive manufacturing embraces big data[J]. Progress In Additive Manufacturing, 2021, 6(2): 181-197. doi: 10.1007/s40964-021-00172-8
    [52]
    IKRAM H, AL RASHID A, KOç M. Additive manufacturing of smart polymeric composites: Literature review and future perspectives[J]. Polymer Composites, 2022, 43(9): 6355-6380. doi: 10.1002/pc.26948
    [53]
    KIM K, KIM J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field[J]. International Journal of Thermal Sciences, 2016, 100: 29-36. doi: 10.1016/j.ijthermalsci.2015.09.013
    [54]
    ZHAO R, CHEN C, SHUAI S, et al. Enhanced mechanical properties of Ti6Al4V alloy fabricated by laser additive manufacturing under static magnetic field[J]. Materials Research Letters, 2022, 10(8): 530-538. doi: 10.1080/21663831.2022.2064195
    [55]
    REN L, ZHOU X, XUE J, et al. Thermal Metamaterials with Site-Specific Thermal Properties Fabricated by 3D Magnetic Printing[J]. Advanced Materials Technologies, 2019, 4(7).
    [56]
    LIU M, YOUNES H, HONG H, et al. Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes[J]. Polymer, 2019, 166: 81-87. doi: 10.1016/j.polymer.2019.01.031
    [57]
    JIA B, LI Q, MA L, et al. Magnetic field-assisted sintering of nickel-doped silver microwire to improve densification and conductivity[J]. Journal of Magnetism and Magnetic Materials, 2020, 513.
    [58]
    ZHANG G, SONG D, JIANG J, et al. Electrically assisted continuous vat photopolymerization 3D printing for fabricating high-performance ordered graphene/polymer composites[J]. Composites Part B: Engineering, 2023, 250.
    [59]
    CHAVEZ L A, REGIS J E, DELFIN L C, et al. Electrical and mechanical tuning of 3D printed photopolymer–MWCNT nanocomposites through in situ dispersion[J]. Journal of Applied Polymer Science, 2019, 136(22).
    [60]
    KIM H, TORRES F, VILLAGRAN D, et al. 3D Printing of BaTiO3/PVDF Composites with Electric In Situ Poling for Pressure Sensor Applications[J]. Macromolecular Materials and Engineering, 2017, 302(11).
    [61]
    WEI H, YUAN Y, REN T, et al. High-Dielectric PVP@PANI/PDMS Composites Fabricated via an Electric Field-Assisted Approach[J]. Polymers, 2022, 14(20).
    [62]
    LI X, LIM K M, ZHAI W. A novel class of bioinspired composite via ultrasound-assisted directed self-assembly digital light 3D printing[J]. Applied Materials Today, 2022, 26.
    [63]
    GREENHALL J, HOMEL L, RAEYMAEKERS B. Ultrasound directed self-assembly processing of nanocomposite materials with ultra-high carbon nanotube weight fraction[J]. Journal of Composite Materials, 2019, 53(10): 1329-1336. doi: 10.1177/0021998318801452
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (68) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return