Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LI Xiaolong, FANG Hai, WU Peng. Flexural creep test and prediction of GFRP-balsa sandwich beams[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3816-3824.
Citation: LI Xiaolong, FANG Hai, WU Peng. Flexural creep test and prediction of GFRP-balsa sandwich beams[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3816-3824.

Flexural creep test and prediction of GFRP-balsa sandwich beams

Funds:  National Natural Science Foundation of China (52108215)
  • Received Date: 2023-09-27
  • Accepted Date: 2023-11-02
  • Rev Recd Date: 2023-10-22
  • Available Online: 2023-11-18
  • Publish Date: 2024-07-15
  • The application scope of the glass fiber reinforced plastic (GFRP)-balsa sandwich structure composed of GFRP facings and a balsa wood core is constantly expanding in the field of infrastructure. However, GFRP-balsa sandwich structures are susceptible to creep deformation due to their viscoelasticity. Under the controlled temperature of (25±1)°C and relative humidity of 55%±5%, the three-point flexural creep performance of the GFRP-balsa sandwich beams at 20%, 25% and 30% load levels were tested for a period of 3000~8760 h using the self-designed flexural creep loading devices. Various models were used to simulate and predict the creep response of the GFRP-balsa sandwich beams. The results show that the GFRP-balsa sandwich beams exhibit linear viscoelasticity at the test load levels. Flexural creep has an important impact on the mid-span deflection of the GFRP-balsa sandwich beams, and the creep coefficients at 3000 h of all the specimens are not less than 0.35. The Findley model is applicable for fitting the time-dependent total deflection of the GFRP-balsa sandwich beams at a single load level, and the maximum relative error between the fitting value and the test value at 3000 h is only 0.7%. The Bailey-Norton model and the general power law model are applicable for predicting the creep deflection and the time-dependent total deflection of the GFRP-balsa sandwich beams when the load level does not exceed 30%, respectively. At one year, the maximum relative error between the predicted value of the Bailey-Norton model and the test value is 8.3%, and the maximum relative error between the predicted value of the general power law model and the test value is 5.9%.

     

  • loading
  • [1]
    CHENG Y, REN K, FU J, et al. Simulation study on the anti-penetration performance and energy absorption characteristics of honeycomb aluminum sandwich structure[J]. Composite Structures, 2023, 310: 116776. doi: 10.1016/j.compstruct.2023.116776
    [2]
    HUANG S, LIU Y, WEN K, et al. Optimization design of a novel microwave absorbing honeycomb sandwich structure filled with magnetic shear-stiffening gel[J]. Composites Science and Technology, 2023, 232: 109883. doi: 10.1016/j.compscitech.2022.109883
    [3]
    CHEN C, FANG H, ZHU L, et al. Low-velocity impact properties of foam-filled composite lattice sandwich beams: Experimental study and numerical simulation[J]. Composite Structures, 2023, 306: 116573. doi: 10.1016/j.compstruct.2022.116573
    [4]
    JOSEPH C, MUTHUKUMAR C, NG L F, et al. The effect of nanoclay on the performance of basalt-epoxy facesheet and foam core sandwich panels[J]. Journal of Sandwich Structures & Materials, 2023, 25(7): 730-746.
    [5]
    ZHANG L, LIU W, WANG L, et al. Mechanical behavior and damage monitoring of pultruded wood-cored GFRP sandwich components[J]. Composite Structures, 2019, 215: 502-520. doi: 10.1016/j.compstruct.2019.02.084
    [6]
    ÖNAL T, TEMIZ Ş. Experimental and numerical investigation of flexural behavior of balsa core sandwich composite structures[J]. Materials Testing, 2023, 65(7): 1056-1068. doi: 10.1515/mt-2022-0375
    [7]
    FANG H, BAI Y, LIU W, et al. Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments[J]. Composites Part B:Engineering, 2019, 164: 129-143. doi: 10.1016/j.compositesb.2018.11.047
    [8]
    刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4): 1-16. doi: 10.14006/j.jzjgxb.2019.04.001

    LIU Weiqing, FANG Hai, FANG Yuan. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures, 2019, 40(4): 1-16(in Chinese). doi: 10.14006/j.jzjgxb.2019.04.001
    [9]
    CHEN J, ZHUANG Y, FANG H, et al. Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading[J]. Steel and Composite Structures, 2019, 31(2): 133-148.
    [10]
    GARRIDO M, MADEIRA J F A, PROENÇA M, et al. Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation[J]. Construction and Building Materials, 2019, 198: 465-478. doi: 10.1016/j.conbuildmat.2018.11.259
    [11]
    梁军, 杜善义. 粘弹性复合材料力学性能的细观研究[J]. 复合材料学报, 2001, 18(1): 97-100. doi: 10.3321/j.issn:1000-3851.2001.01.023

    LIANG Jun, DU Shanyi. Study of mechanical properties of viscoelastic matrix composite by micromechanics[J]. Acta Materiae Compositae Sinica, 2001, 18(1): 97-100(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.01.023
    [12]
    张尧, 朱四荣, 陆士平, 等. 考虑界面效应的GFRP复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11): 3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001

    ZHANG Yao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3682-3692(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210119.001
    [13]
    HUANG J S, GIBSON L J. Creep of sandwich beams with polymer foam cores[J]. Journal of Materials in Civil Engineering, 1990, 2(3): 171-182. doi: 10.1061/(ASCE)0899-1561(1990)2:3(171)
    [14]
    SHENOI R A, ALLEN H G, CLARK S D. Cyclic creep and creep-fatigue interaction in sandwich beams[J]. Strain Analysis for Engineering Design, 1997, 32(1): 1-18. doi: 10.1243/0309324971513175
    [15]
    CHEN Z, YAN N, DENG J, et al. Flexural creep behavior of sandwich panels containing Kraft paper honeycomb core and wood composite skins[J]. Materials Science and Engineering:A, 2011, 528(16-17): 5621-5626. doi: 10.1016/j.msea.2011.03.092
    [16]
    DU Y, YAN N, KORTSCHOT M T. An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels[J]. Composite Structures, 2013, 106: 160-166. doi: 10.1016/j.compstruct.2013.06.007
    [17]
    GARRIDO M, CORREIA J R, BRANCO F A, et al. Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modelling[J]. Journal of Composite Materials, 2014, 48(18): 2237-2249. doi: 10.1177/0021998313496593
    [18]
    GARRIDO M, CORREIA J R, KELLER T, et al. Creep of sandwich panels with longitudinal reinforcement ribs for civil engineering applications: Experiments and composite creep modeling[J]. Journal of Composites for Construction, 2017, 21(1): 1-11.
    [19]
    GARRIDO M, CORREIA J R, KELLER T. Effect of service temperature on the flexural creep of vacuum infused GFRP laminates used in sandwich floor panels[J]. Composites Part B:Engineering, 2016, 90: 160-171. doi: 10.1016/j.compositesb.2015.12.027
    [20]
    GARRIDO M, CORREIA J R, KELLER T. Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels[J]. Construction and Building Materials, 2016, 118: 235-244. doi: 10.1016/j.conbuildmat.2016.05.074
    [21]
    BOTTONI M, MAZZOTTI C, SAVOIA M. Creep tests on GFRP pultruded specimens subjected to traction or shear[J]. Composite Structures, 2014, 108: 514-523. doi: 10.1016/j.compstruct.2013.09.057
    [22]
    GONILHA J A, CORREIA J R, BRANCO F A. Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype[J]. Composites Part B:Engineering, 2013, 53: 193-206. doi: 10.1016/j.compositesb.2013.04.054
    [23]
    GARRIDO M, CORREIA J R. Elastic and viscoelastic behaviour of sandwich panels with glass-fibre reinforced polymer faces and polyethylene terephthalate foam core[J]. Journal of Sandwich Structures and Materials, 2018, 20(4): 399-424. doi: 10.1177/1099636216657388
    [24]
    KELLER T, ROTHE J, CASTRO J D, et al. GFRP-balsa sandwich bridge deck: concept, design, and experimental validation[J]. Journal of Composites for Construction, 2014, 18(2): 785-793.
    [25]
    American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M-17 [S]. West Conshohocken, PA, USA: ASTM International, 2017.
    [26]
    American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading: ASTM D3410/D3410M-16 [S]. West Conshohocken, PA, USA: ASTM International, 2016.
    [27]
    American Society for Testing and Materials. Standard test method for core shear properties of sandwich constructions by beam flexure: ASTM C393/C393M-20 [S]. West Conshohocken, PA, USA: ASTM International, 2016.
    [28]
    American Society for Testing and Materials. Standard test method for flexure creep of sandwich constructions: ASTM C480/C480M-16 [S]. West Conshohocken, PA, USA: ASTM International, 2016.
    [29]
    American Society for Testing and Materials. Standard test methods for direct moisture content measurement of wood and wood-based materials: ASTM D4442-20 [S]. West Conshohocken, PA, USA: ASTM International, 2020.
    [30]
    SCOTT D W, ZUREICK A H. Compression creep of a pultruded E-glass/vinylester composite[J]. Composites Science and Technology, 1998, 58(8): 1361-1369. doi: 10.1016/S0266-3538(98)00009-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (172) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return