Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WEI Yuhan, ZENG Qin, BAI Hongbai, et al. Research progress of high-temperature baseline seal with hybrid structure of multiple materials[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3457-3470.
Citation: WEI Yuhan, ZENG Qin, BAI Hongbai, et al. Research progress of high-temperature baseline seal with hybrid structure of multiple materials[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3457-3470.

Research progress of high-temperature baseline seal with hybrid structure of multiple materials

Funds:  National Natural Science Foundation of China (12272094; 12002088) and Natural Science Foundation of Fujian Province (2022J01541).
  • Received Date: 2023-09-21
  • Accepted Date: 2023-11-29
  • Rev Recd Date: 2023-11-13
  • Available Online: 2023-12-12
  • Publish Date: 2024-07-15
  • The high temperature baseline seal with hybrid structure of multiple materials is a novel porous composite, which is composed of thermal insulation core material, metal braided spring tube and ceramic fiber braided tube. It has excellent multi-functional performances, including flexibility, high temperature resistance, abrasion resistance and sealing. It is vital for improving the comprehensive performance of the hot end components, especially for the new generation of high-speed aircraft. Hybrid structure of multiple materials can take advantage of specific attributes of each material to enhance the performance of a product or introduce new functionalities. For the proposed high-temperature baseline, the inner core material plays a role on thermal insulation, and the intermediate superalloy braided spring tube play a dominative effect on the elastic deformation recovery during the dynamic seal condition, and the outer ceramic fiber tube makes a function on heat and wear resistance. The major problem of hybrid structure is emanated from the different property of each component material, the internal relationship between hybrid structure and performance regulation is still unclear. To end this, the characteristics of each component material and fabrication technology of high temperature baseline seal with hybrid structure of multiple materials are firstly introduced. Then, the current research on the theory and numerical model of high temperature baseline are sorted out and summarized. Once more, the main challenges for the key fabrication technology of high-temperature baseline seal and its service ability in the high-temperature and dynamic loading are expounded. Finally, the research development trend and engineering application potentials of novel high-temperature baseline seal with hybrid structure of multiple materials are prospected.

     

  • loading
  • [1]
    韩杰才, 洪长青, 张幸红, 等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4): 315-321.

    HAN J C, HONG C Q, ZHANG X H, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015, 21(4): 315-321(in Chinese).
    [2]
    陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5): 311-390.

    CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5): 311-390 (in Chinese).
    [3]
    DEMANGE J J, DUNLAP P H, STEINETZ B M. Advanced control surface seal development for future space vehicles [C]//3rd Modeling and Simulation Joint Subcommittee Meeting. Colorado, 2004: 212898.
    [4]
    DUNLAP P H, FINKBEINER J, STEINETZ B M, et al. Design study of wafer seals for future hypersonic vehicles [C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Arizona, 2005: 4153.
    [5]
    DELLACORTE C, STEINETZ B M. Tribological comparison and design selection of high-temperature candidate ceramic fiber seal materials. Lubrication engineering[J]. 1994, 50(6): 469-477.
    [6]
    DUNLAP P H, STEINETZ B M, CURRY D M. Rudder/fin seal investigations for the X-38 re-entry vehicle. [C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Las Vegas, 2000: 3508.
    [7]
    DUNLAP P H, STEINETZ B M, DEMANGE J J. Toward an improved hypersonic engine seal [C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Alabama, 2004: 4834.
    [8]
    DEMANGE J J, DUNLAP P H, STEINETZ B M, et al. An evaluation of high-temperature airframe seals for advanced hypersonic vehicles [C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, 2007: 5743.
    [9]
    DUNLAP P H, STEINETZ B M, CURRY D M, et al. Investigations of a control surface seal for reentry vehicles[J]. Journal of spacecraft and rockets, 2003, 40(4): 570-583. doi: 10.2514/2.3979
    [10]
    DUNLAP P H, STEINETZ B M, DANIELS C C, et al. Full-scale system for quantifying loads and leak rates of seals for space applications [C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, 2010: 6987.
    [11]
    FINKBEINER J R, DUNLAP P H, STEINETZ B M, et al. On the development of a unique arc jet test apparatus for control surface seal evaluations [C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Florida, 2004: 3891.
    [12]
    MAZAHERI A, BRUCE W E, MESICK N J, et al. Methodology for flight-relevant arc-jet testing of flexible thermal protection systems[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 789-800. doi: 10.2514/1.A32721
    [13]
    LU I. TABI-The lightweight durable thermal protection system for future reusable launch vehicles [C]//37th Structure, Structural Dynamics and Materials Conference. Salt Lake City, 2012: 1426.
    [14]
    DEMANGE J J, DUNLAP P H, STEINETZ B M. Improved seals for high-temperature airframe applications [C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. California, 2006: 4935.
    [15]
    TRAN K D. Burn-through resistance of fibre/felt materials for aircraft fuselage insulation blankets[J]. Fire and Materials, 2002, 26(1): 1-6. doi: 10.1002/fam.779
    [16]
    SHEN S, ZHAO Y, DU H, et al. Mullite fiber sealing pad with favorable high-temperature rebound resilience fabricated through colloidal processing[J]. Ceramics International, 2014, 40(6): 8905-8909. doi: 10.1016/j.ceramint.2014.01.033
    [17]
    JIA C, LI L, LIU Y, et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances[J]. Nature Communications, 2020, 11(1): 3732. doi: 10.1038/s41467-020-17533-6
    [18]
    DELLACORTE C, STEINETZB M. Relative sliding durability of two candidate high-temperature oxide fiber seal materials[J]. Journal of Propulsion and Power, 2012, 9(2): 307-312.
    [19]
    DELLACORTE C, STEINETZB M. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals[J]. Tribology Transactions, 2008, 37(2): 369-377.
    [20]
    STEINETZB M, DUNLAP P H. Feasibility assessment of thermal barriers for extreme transient temperatures[J]. Journal of propulsion and power, 2000, 16(2): 347-356. doi: 10.2514/2.5576
    [21]
    DELLACORTE C, STEINETZB M. Sliding durability candidate high-temperature materials in air to 900°C of two carbide-oxide fiber seal [C]//International Conference of Wear of Materials. Cleveland, 1992: 105554.
    [22]
    OGASAWARA, T, ISHIKAWA T, MATSUZAKI T, et al. Durability of 3-D woven Si-Ti-C-O fiber/Si-Ti-C-O matrix composite evaluated by arc jet test[J]. Journal of the Ceramic Society of Japan, 2000, 108(1253): 80-88. doi: 10.2109/jcersj.108.80
    [23]
    STEINETZB M, ADAMS M L, BARTOLOTTA P A, et al. High-temperature braided rope seals for static sealing applications[J]. Journal of Propulsion and Power, 1997, 13(5): 675-682. doi: 10.2514/2.5219
    [24]
    STEINETZB M, ADAMS M L. Effects of compression, staging, and braid angle on braided rope seal performance. Journal of Propulsion and Power[J]. 1998, 14(6): 934-940.
    [25]
    焦亚男, 仇普霞, 方鹏, 等. 热密封件用三维编织物压缩性能试验研究[J]. 固体火箭技术, 2015, 38(6): 865-869+876.

    JIAO Y N, QIU P X, FANG P, et al. Experimental investigation on compression properties of 3D braided thermal seals[J]. Journal of Solid Rocket Technology, 2015, 38(6): 865-869+876 (in Chinese).
    [26]
    焦亚男, 李想, 方鹏, 等. 三维编织石英纤维热密封材料气密性能研究[J]. 固体火箭技术, 2017, 40(03): 358-363.

    JIAO Y N, LI X, FANG P, et al. Experimental investigation on air permeability of 3D braided thermal sealing materials with quartz fiber[J]. Journal of Solid Rocket Technology, 2017, 40(03): 358-363 (in Chinese).
    [27]
    焦亚男, 景媛媛, 方鹏, 等. 立体编织石英纤维热密封环的气密性能[J]. 纺织学报, 2017, 38(6): 46-51.

    JIAO Y N, JING Y Y, FANG P, et al. Gas tightness characteristics of 3-D braided sealing rings[J]. Journal of Textile Research, 2017, 38(6): 46-51 (in Chinese).
    [28]
    NANCE J, SUBHASH G, SANKAR B, et al. Influence of weave architecture on mechanical response of SiCf-SiCm tubular composites[J]. Materials today communications, 2022, 33: 104206. doi: 10.1016/j.mtcomm.2022.104206
    [29]
    薛云嘉. 编织弹簧-陶瓷纤维热密封组件的制备及其性能的研究 [D]. 天津: 天津大学, 2018.

    XUE Y J. Preparation and properties of braided spring-ceramic fiber thermal barrier seals [D]. Tianjin: Tianjin University, China, 2018 (in Chinese).
    [30]
    SHANG Z F, MA J Y, YOU Z, et al. Lateral indentation of a reinforced braided tube with tunable stiffness[J]. Thin-Walled Structures, 2020, 149: 106608. doi: 10.1016/j.tws.2020.106608
    [31]
    SARAWATE N. Stiffness and leakage characterization of ceramic-metallic rope seals [C]//Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers. Texas, 2013: V03AT15A004.
    [32]
    RAVANDI M, MORADI A, AHLQUIST S, et al. Numerical simulation of the mechanical behavior of a weft-knitted carbon fiber composite under tensile loading[J]. Polymers, 2022, 14(3): 451. doi: 10.3390/polym14030451
    [33]
    DUNLAP P H, STEINETZ B M, DEMANGE J J. High-temperature propulsion system structural seals for future space launch vehicles [C]//3rd Modeling and Simulation Joint Subcommittee Meeting. Colorado, 2004: E-14304.
    [34]
    PAQUETTE E, PALKO J. Hypersonic airframe and propulsion seal preload device development for 2300ºF Service [C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3888.
    [35]
    FREITAS A F D P, DE ARAUJO M D, ZU W W, et al. Development of weft-knitted and braided polypropylene stents for arterial implant[J]. The Journal of The Textile Institute, 2010, 101(12): 1027-1034. doi: 10.1080/00405000903126234
    [36]
    TAYLOR S, DEMANGE J, DUNLAP P, et al. Further investigations of high-temperature knitted spring tubes for advanced control surface seal applications. [C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Arizona, 2006: 4154.
    [37]
    郑硕, 邵光伟, 李红, 等. 基于 SPSS 因子分析法分析超细金属丝的可编织性[J]. 东华大学学报(自然科学版), 2023, 49(1): 26-32 (in Chinese).

    ZHENG S, SHAO G W, LI H, et al. Analysis of the knittability of ultra-fine metal wires based on SPSS factor analysis[J]. Journal of Donghua University (Natural Science Edition), 2023, 49(1).
    [38]
    李欢, 王少鹏, 黄春良, 等. 经编金属丝网状织物拉伸性能研究[J]. 针织工业, 2016, (11): 22-25.

    LI H, WANG S P, HUANG C L, et al. Study of tensile properties of warp knitted metal mesh fabric[J]. Knitting Industries, 2016, (11): 22-25 (in Chinese).
    [39]
    薛云嘉, 贾韬, 王锐桐, 等. 用于热密封组件的编织弹簧弹性性能分析[J]. 稀有金属材料与工程, 2020, 49(2): 494-499.

    XUE Y J, JIA T, WANG R T, et al. Elastic properties of braided spring used in thermal barrier seals[J]. Rare Metal Materials and Engineering, 2020, 49(2): 494-499 (in Chinese).
    [40]
    TAYLOR S, DUNLAP P H, DEMANGE J J, et al. Evaluation of high-temperature knitted spring tubes for structural Seal applications [C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Florida, 2004: 3890.
    [41]
    TAYLOR S. Evaluation of material substitution in knitted spring tubes for advanced structural seals [C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Nevada, 2005: 354.
    [42]
    EBADI S, TASNIM S H, ALIABADI A A, et al. An experimental investigation of the charging process of thermal energy storage system filled with PCM and metal wire mesh[J]. Applied Thermal Engineering, 2020, 174: 115266. doi: 10.1016/j.applthermaleng.2020.115266
    [43]
    PAQUETTE E, PALKO J. High-temperature seal energizer device development [C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua, 2005: 3370.
    [44]
    PATIL V C, LIU J, RO P I. Efficiency improvement of liquid piston compressor using metal wire mesh for near-isothermal compressed air energy storage application[J]. Journal of Energy Storage, 2020, 28: 101226. doi: 10.1016/j.est.2020.101226
    [45]
    韩硕. 高温热密封结构设计及试验验证 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HAN S. Structural design and experimental verification of high temperature seal [D]. Harbin: Harbin Institute of Technology. China, 2019 (in Chinese).
    [46]
    毛丽贺, 尹春晖, 焦亚男, 等. 石英纤维柔性缝合隔热材料的制备及其隔热性能[J]. 天津工业大学学报, 2021, 40(5): 37-41.

    MAO L H, YIN C H, JIAO Y N, et al. Preparation of quartz fibre flexible suture thermal insulation material and its thermal insulation performance[J]. Journal of Tiangong University, 2021, 40(5): 37-41 (in Chinese).
    [47]
    薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 251-256.

    XUE Y J, LIU J C. Preparation and elasticity & thermal insulation properties of flexible fiber blankets[J]. Materials Reports, 2023, 37(3): 247-252 (in Chinese).
    [48]
    CAI Z. A nonlinear viscoelastic model for describing the deformation behavior of braided fiber seals[J]. Textile research journal, 1995, 65(8): 461-470. doi: 10.1177/004051759506500805
    [49]
    CAI Z, MUTHARASAN R, KO F K, et al. Characterizing the leakage flow of braided fiber seals[J]. Textile Research Journal, 1994, 64(1): 1-9. doi: 10.1177/004051759406400101
    [50]
    CAI Z, MUTHARASAN R, KO F K, et al. Parametric study of leakage flow in braided fiber seals[J]. Textile research journal, 1994, 64(5): 280-290. doi: 10.1177/004051759406400505
    [51]
    STEINETZ B M, MUTHARASAN R, DU G W, et al. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling [C]//International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Hawaii, 1992: 105260.
    [52]
    MUTHARASAN R, STEINETZ B M, TAO X M, et al. Development of braided rope seals for hypersonic engine applications: flow modeling[J]. Journal of Propulsion and Power, 1993, 9(3): 456-461. doi: 10.2514/3.23643
    [53]
    JING Y Y, JIAO Y N. A model for gas permeation in three-dimensional braided seal[J]. Journal of Industrial Textiles, 2017, 47(7): 1664-1680.
    [54]
    XU X, YAO X, DONG Y, et al. Mechanical behaviors of non-orthogonal fabric rubber seal[J]. Composite Structures, 2021, 259: 113453. doi: 10.1016/j.compstruct.2020.113453
    [55]
    POINCLOUX S, ADDA-BEDIA M, LECHENAULT F. Geometry and elasticity of a knitted fabric[J]. Physical Review X, 2018, 8(2): 021075. doi: 10.1103/PhysRevX.8.021075
    [56]
    SHANG Z, MA J. Bending stiffness characterization of braided stent using spring-based theoretical formula[J]. Archive of Applied Mechanics, 2023, 93(3): 947-960. doi: 10.1007/s00419-022-02307-x
    [57]
    刘俊立, 徐志高, 张峰, 等. 编织热密封组件的高温密封性能[J]. 纺织学报, 2021, 42(10): 84-91.

    LIU J L, XU Z G, ZHANG F, et al. High-temperature sealing performance of braided heat-sealed components[J]. Journal of Textile Research, 2021, 42(10): 84-91 (in Chinese).
    [58]
    吴大方, 王岳武, 潘兵, 等. 高速飞行器轻质防热材料高温环境下的隔热性能研究[J]. 强度与环境, 2011, 38(06): 1-11.

    WU D F, WANG Y W, PAN B, et al. Research on insulation properties of high-speed aircraft lightweight heat-resistant materials in high-temperature environment[J]. Structure & Environment Engineering, 2011, 38(06): 1-11 (in Chinese).
    [59]
    GOLEWSKI P, SADOWSKI T. A novel application of alumina fiber mats as tbc protection for CFRP/epoxy laminates -laboratory tests and numerical modeling[J]. Journal of the European Ceramic Society, 2018, 38(8): 2920-2927. doi: 10.1016/j.jeurceramsoc.2018.01.008
    [60]
    Zuo H M, Zhu H, Li D S, et al. Study on in-plane compression properties and numerical modeling of three dimensional five-directional braided composites[J]. Thin-Walled Structures, 2021, 168: 108232 doi: 10.1016/j.tws.2021.108232
    [61]
    石多奇, 牛宏伟, 景鑫, 等. 考虑孔隙的三维编织陶瓷基复合材料弹性常数预测方法[J]. 航空动力学报, 2014, 29(12): 2891-2897.

    SHI D Q, NIU H W, JING X, et al. Prediction method of elastic constants of 3-D braided ceramic matrix composites considering porezs[J]. Journal of Aerospace Power, 2014, 29(12): 2891-2897 (in Chinese)
    [62]
    YU X M , GU B Q, ZHANG B. Modeling and experimental validation of transverse compressive behavior of sepiolite reinforced rubber composites[J]. Fibers and Polymers, 2015, 16(10): 2258-2265.
    [63]
    ZHANG B, YU X M, GU B Q. Modeling and experimental validation of interfacial fatigue damage in fiber-reinforced rubber composites[J]. Polymer Engineering & Science, 2018, 58(6): 920-927.
    [64]
    LIANG J L, CONG H L, GAO Z, et al. Computer-aided design of weft-knitted two-side jacquard fabric[J]. International Journal of Clothing Science and Technology, 2020, 33(1): 122-136. doi: 10.1108/IJCST-04-2019-0061
    [65]
    徐巧, 丛洪莲, 张爱军, 等. 纬编针织物CAD设计模型的建立与实现[J]. 纺织学报, 2014, 35(03): 136-140+144.

    XU Q, CONG H L, ZHANG A J, et al. Establishment and implementation of weft-knitted fabric's design model in CAD system[J]. Journal of Textile Research, 2014, 35(03): 136-140 (in Chinese).
    [66]
    LIU Y P, HU H. Compression property and air permeability of weft-knitted spacer fabrics[J]. Journal of The Textile Institute, 2011, 102(4): 366-372. doi: 10.1080/00405001003771200
    [67]
    OSWALD J, MULLEN R, STEINETZ B M, et al. Modeling of canted coil springs and knitted spring tubes as high temperature seal preload devices [C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Arizona, 2005: 4156.
    [68]
    王鹏, 石多奇, 周玉贵. 高温基线密封结构编织圆管有限元建模及参数优化 [C]//中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议. 洛阳, 2018: 39-44.

    WANG P, SHI D Q, ZHOU Y G. Modeling and simulation of braided spring tubes in high temperature baseline seals. [C]//39th Technical Exchange Meeting of China Aerospace Third Professional Information Network and the 3rd Joint Conference on Aerospace Power. Luoyang. 2018: 39-44.
    [69]
    巴全坤, 王维民, 姜鑫, 等. 高温基线密封编织弹簧管的建模与仿真[J]. 宇航材料工艺, 2019, 49(3): 15-20.

    BA Q K, WANBG W M, JIANG X, et al. Modeling and simulation of braided spring tubes in high temperature baseline seals[J]. Aerospace Materials & Technology, 2019, 49(3): 15-20 (in Chinese).
    [70]
    常健, 李华, 蔡云丽, 等. 金属弹簧管性能影响因素的仿真分析[J]. 宇航材料工艺, 2020, 50(5): 14-19.

    CHANG J, LI H, CAI Y L, et al. Simulation analysis of influencing factors on metal spring tube performance[J]. Aerospace Materials & Technology, 2020, 50(5): 14-19 (in Chinese).
    [71]
    REICH A, ATHAVALE M, DUNLAP P H, et al. Control surface seal arc jet investigations: Comparison of experimental and CFD results [C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, 2002: 3942.
    [72]
    ZHENG Y T, GAO X, LIU Y. Numerical modelling of braided ceramic fiber seals by using element differential method[J]. Composite Structures, 2023, 304: 116461. doi: 10.1016/j.compstruct.2022.116461
    [73]
    ZHENG Y T, GAO X, LIU S, et al. Multi-physics coupling analysis of rope-sealed structures with braided ceramic fibres by element differential method[J]. International Journal of Computational Methods and Experimental Measurements, 2020, 9(2): 153-164.
    [74]
    白瑜光, 夏广庆, 孙得川, 等. 航天器舱体热密封结构多物理场耦合数值分析方法研究. 固体火箭技术. 2014, 37(6): 756-762.

    BAI Y G, XIA G Q, SUN D C, et al. Research on numerical method of heat-sealing structure for spacecraft hull based on multi-physics coupling[J]. Journal of Solid Rocket Technology, 2014, 37(6): 756-762 (in Chinese).
    [75]
    YANG H L, LI X L, SUN W W, et al. Mixed EHL numerical analysis and leakage experiment of skeleton reciprocating oil seal[J]. Industrial Lubrication and Tribology, 2021, 73(4): 660-665. doi: 10.1108/ILT-10-2020-0364
    [76]
    WONG H, KREMER F. Numerical assessment on the heating of the rudder/fin gap in X38 space vehicle [C]//Aerothermodynamics for space vehicles. Noordwijk, 1999: 77.
    [77]
    DUNLAP P H, STEINETZ B M, CURRY D M, et al. Further investigations of control surface seals for the X-38 re-entry vehicle [C]//37th Joint Propulsion Conference and Exhibit. Salt Lake City, 2001: 3628.
    [78]
    王振峰, 高扬, 徐晓亮, 等. 航天器高温热密封设计方法及性能评价[J]. 宇航学报, 2018, 39(7): 793-800. doi: 10.3873/j.issn.1000-1328.2018.07.011

    WANG Z F, GAO Y, XU X L, et al. Design method and performance evaluation criteria of advanced spacecraft heat seal[J]. Journal of Astronautics, 2018, 39(7): 793-800 (in Chinese). doi: 10.3873/j.issn.1000-1328.2018.07.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (167) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return