Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LI Wenjie, GAO Shanlin, LAI Chunbo, et al. Performance of Cu-BTC-derived CuOx/C for methanol oxidative carbonylation to dimethyl carbonate[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3624-3633.
Citation: LI Wenjie, GAO Shanlin, LAI Chunbo, et al. Performance of Cu-BTC-derived CuOx/C for methanol oxidative carbonylation to dimethyl carbonate[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3624-3633.

Performance of Cu-BTC-derived CuOx/C for methanol oxidative carbonylation to dimethyl carbonate

Funds:  Supported by Sichuan Science and Technology Program (Grant No. 2022ZYD0049 and 2021YFG0225), Foundation of Shanghai Engineering Research Center of Coal-based Polygeneration (No. GZKF-MJDLC-03) and Scientific Research Foundation of Chengdu University of Information Technology (Grant No. KYTZ202118).
  • Received Date: 2023-09-18
  • Accepted Date: 2023-11-23
  • Rev Recd Date: 2023-11-05
  • Available Online: 2023-12-12
  • Publish Date: 2024-07-15
  • Carbon-based material supported Cu is an efficient catalyst for methanol oxidative carbonylation to dimethyl carbonate, but Cu nanoparticles are prone to agglomeration and oxidation. Cu-BTC were prepared by hydrothermal method. And then CuOx/C catalysts was prepared by pyrolysis Cu-BTC under N2 atmosphere. The effect of pyrolysis temperature on Cu nanoparticle size, Cu valence state and performance for methanol oxidative carbonylation to dimethyl carbonate were investigated. The characterization results show that increasing the pyrolysis temperature is beneficial to the reduction of Cu2+ to (Cu0+Cu+), but would lead to the agglomeration of Cu nanoparticles. Catalytic activity decreases with the increasing of pyrolysis temperature. CuOx/C-300, prepared by pyrolysis of Cu-BTC at 300 ℃, shows the optimized catalytic activity and the space-time yield of dimethyl carbonate is 1209 mg·g−1·h−1. This is attributed to the smallest particle size of Cu nanoparticles (7.5 nm). In addition, the space-time yield of dimethyl carbonate decreased to 468 mg·g−1·h−1 after 6 cycle experiments. The main reasons for catalyst inactivation are the oxidation of (Cu0+Cu+) and the agglomeration of Cu nanoparticles.

     

  • loading
  • [1]
    TAMBOLI A H, CHAUGULE A A, KIM H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chemical Engineering Journal, 2017, 323: 530-544. doi: 10.1016/j.cej.2017.04.112
    [2]
    SELVA M, PEROSA A, RODRÍGUEZ-PADRÓN D, et al. Applications of dimethyl carbonate for the chemical upgrading of biosourced platform chemicals[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6471-6479.
    [3]
    ZHANG M, XU Y H, WILLIAMS B L, et al. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2[J]. Journal of Cleaner Production, 2021, 279: 123344. doi: 10.1016/j.jclepro.2020.123344
    [4]
    丁晓墅, 李乃华, 王淑芳等. 甲醇为原料联合制备碳酸二甲酯、甲缩醛和二甲醚反应体系热力学计算及节能分析[J]. 化工学报, 2015, 66(07): 2377-2386. doi: 10.11949/j.issn.0438-1157.20141673

    DING X S, LI N H, WANG S F, et al. Thermodynamic calculation and energy saving analysis of combined reaction system for production of dimethyl carbonate, methylal and dimethyl ether from methanol[J]. CIESC Journal, 2015, 66(07): 2377-2386(in Chinese). doi: 10.11949/j.issn.0438-1157.20141673
    [5]
    KUMAR P, SRIVASTAVA V C, ŠTANGAR U L, et al. Recent progress in dimethyl carbonate synthesis using different feedstock and techniques in the presence of heterogeneous catalysts[J]. Catalysis Reviews, 2019, 63(3): 363-421.
    [6]
    HUANG S Y, YAN B, WANG S P, et al. Recent advances in dialkyl carbonates synthesis and applications[J]. Chemical Society Reviews, 2015, 44(10): 3079-3116. doi: 10.1039/C4CS00374H
    [7]
    ROMANO U, RIVETTI F, MUZIO N D. Process for producing dimethyl carbonate: US4318862A [P]. 1982-03-09.
    [8]
    HAN M S, LEE B G, SUH I, et al. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2001, 170: 225-234 doi: 10.1016/S1381-1169(01)00073-5
    [9]
    宋宇淙, 丁晓墅, 闫亚辉等. 氧化石墨烯复合金属催化剂催化碳酸二甲酯合成反应性能[J]. 化工学报, 2019, 70(4): 1401-1408.

    SONG Y C, DING X S, YAN Y H, et al. Catalytic performance of graphene oxide composite metal catalyst in dimethyl carbonate synthesis[J]. CIESC Journal, 2019, 70(4): 1401-1408(in Chinese).
    [10]
    MO W L, XIONG H, LI T, et al. The catalytic performance and corrosion inhibition of CuCl/Schiff base system in homogeneous oxidative carbonylation of methanol[J]. Journal of Molecular Catalysis A:Chemical, 2006, 247(1-2): 227-232. doi: 10.1016/j.molcata.2005.11.051
    [11]
    RAAB V, MERZ M, SUNDERMEYER J. Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC)[J]. Journal of Molecular Catalysis A:Chemical, 2001, 175: 51-63. doi: 10.1016/S1381-1169(01)00220-5
    [12]
    LIU D H, HE J, SUN L B, et al. Cupric bromide-derived complex: An effective homogeneous catalyst for oxidative carbonylation of methanol to dimethyl carbonate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(4): 616-621. doi: 10.1016/j.jtice.2010.10.005
    [13]
    肖艳华, 孙志康, 文武强等. 铜配合物Cu( 5-CH3-1, 10-phenanthroline) Br2催化甲醇氧化羰基化[J]. 精细化工, 2017, 34(04): 424-430.

    XIAO Y H, SUN Z K, WEN W Q, et al. Oxidative carbonylation of methanol catalyzed by Cu(5-CH3-1, 10-phenanthroline)Br2[J]. Fine Chemicals, 2017, 34(04): 424-430(in Chinese).
    [14]
    邓志勇, 李文杰, 林慧博等. 醇直接氧化羰基化合成碳酸二甲酯催化剂的研究进展[J]. 精细化工, 2022, 39(11): 2196-2202+2214 doi: 10.13550/j.jxhg.20220423

    DENG Z Y, LI W J, LIN H B, et al. Research progress of catalysts for synthesis of dimethyl carbonate via direct oxidative carbonylation of methanol[J]. Fine Chemicals, 2022, 39(11): 2196-2202+2214 (in Chinese) doi: 10.13550/j.jxhg.20220423
    [15]
    SHI K, HUANG S Y, ZHANG Z Y, et al. Novel fabrication of copper oxides on AC and its enhanced catalytic performance on oxidative carbonylation of methanol[J]. Chinese Chemical Letters, 2017, 28(1): 70-74. doi: 10.1016/j.cclet.2016.06.005
    [16]
    ZHANG G Q, YAN J F, WANG J J, et al. Effect of carbon support on the catalytic performance of Cu-based nanoparticles for oxidative carbonylation of methanol[J]. Applied Surface Science, 2018, 455: 696-704. doi: 10.1016/j.apsusc.2018.05.114
    [17]
    SHI R N, ZHAO J X, QUAN Y H, et al. Fabrication of few-layer graphene-supported copper catalysts using a lithium-promoted thermal exfoliation method for methanol oxidative carbonylation[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30483-30493.
    [18]
    SHI R N, WANG J A, ZHAO J X, et al. Cu nanoparticles encapsulated with hollow carbon spheres for methanol oxidative carbonylation: Tuning of the catalytic properties by particle size control[J]. Applied Surface Science, 2018, 459: 707-715. doi: 10.1016/j.apsusc.2018.08.032
    [19]
    WANG J J, YANG L, FU T J, et al. The confinement effects of ordered mesoporous carbon on copper nanoparticles for methanol oxidative carbonylation[J]. New Journal of Chemistry, 2022, 46(6): 2980-2988. doi: 10.1039/D1NJ05480E
    [20]
    ZHANG G Q, LI Z, ZHENG H Y, et al. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate[J]. Applied Surface Science, 2016, 390: 68-77. doi: 10.1016/j.apsusc.2016.08.054
    [21]
    ZHANG G Q, ZHAO D, YAN J F, et al. The promotion and stabilization effects of surface nitrogen containing groups of CNT on cu-based nanoparticles in the oxidative carbonylation reaction[J]. Applied Catalysis A:General, 2019, 579: 18-29. doi: 10.1016/j.apcata.2019.04.012
    [22]
    FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. doi: 10.1126/science.1230444
    [23]
    KONNERTH H, MATSAGAR B M, CHEN S S, et al. Metal-organic framework (MOF)-derived catalysts for fine chemical production[J]. Coordination Chemistry Reviews, 2020, 416: 213319. doi: 10.1016/j.ccr.2020.213319
    [24]
    LIU X L, VERMA G, CHEN Z S, et al. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications[J]. Innovation (Camb), 2022, 3(5): 100281.
    [25]
    黄国芳, 程佳, 王娜等. 金属有机框架衍生单原子催化剂的构筑策略及其在制氢反应中的应用[J/OL]. 复合材料学报, 1-14[2023-09-13].

    HONG G F, CHENG J, WANG N, et al. Construction strategy of metal-organic frameworks derived single-atom catalysts and their application in hydrogen production[J/OL]. Acta Materiae Compositae Sinica, 1-14 [2023-09-13]. (in Chinese)
    [26]
    WANG Q, XIAO L P, LV Y H, et al. Metal–organic-framework-derived copper catalysts for the hydrogenolysis of lignin into monomeric phenols[J]. ACS Catalysis, 2022, 12(19): 11899-11909. doi: 10.1021/acscatal.2c02955
    [27]
    JIA Y, LIU Y L, ZHAO P H, et al. Chemical thermodynamic and catalytic mechanism analysis of Cu-BTC-derived CuOx/C catalyst for selective catalytic reduction (SCR)[J]. Molecular Catalysis, 2022, 531: 112710. doi: 10.1016/j.mcat.2022.112710
    [28]
    HUANG K M, CHEN S Y, XIA C J, et al. HKUST-1 derived Cu@CuOx/carbon catalyst for base-free aerobic oxidative coupling of benzophenone imine: high catalytic efficiency and excellent regeneration performance[J]. RSC Advances, 2020, 10(59): 36111-36118. doi: 10.1039/D0RA06367C
    [29]
    ZHANG R R, HU L, BAO S X, et al. Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation[J]. Journal of Materials Chemistry A, 2016, 4(21): 8412-8420. doi: 10.1039/C6TA01199C
    [30]
    CHEN K, LING J L, WU C D. In situ generation and stabilization of accessible Cu/Cu2O heterojunctions inside organic frameworks for highly efficient catalysis[J]. Angewandte Chemie International Edition, 2020, 59(5): 1925-1931. doi: 10.1002/anie.201913811
    [31]
    PEI Y L, ZHAO J X, SHI R N, et al. Hierarchical porous carbon-supported copper nanoparticles as an efficient catalyst for the dimethyl carbonate synthesis[J]. Catalysis Letters, 2019, 149(11): 3184-3193. doi: 10.1007/s10562-019-02884-7
    [32]
    李忠, 文春梅, 王瑞玉等. 醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化[J]. 高等学校化学学报, 2009, 30: 2024-2031. doi: 10.3321/j.issn:0251-0790.2009.10.021

    LI Z, WEN C M, WANG R W, et al. Chloride-free Cu2O/AC catalyst prepared by pyrolysis of copper acetate and catalytic oxycarbonylation[J]. Chemical Journal of Chinese Universities, 2009, 30: 2024-2031(in Chinese). doi: 10.3321/j.issn:0251-0790.2009.10.021
    [33]
    ZHAO J X, SHI R N, QUAN Y H, et al. Highly efficient synthesis of dimethyl carbonate over copper catalysts supported on resin-derived carbon microspheres[J]. Chemical Engineering Science, 2019, 207: 1060-1071. doi: 10.1016/j.ces.2019.07.039
    [34]
    SHI R N, ZHAO J X, QUAN Y H, et al. Carbon-supported nitrogen-doped graphene-wrapped copper nanoparticles: an effective catalyst for the oxidative carbonylation of methanol[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 2944-2953.
    [35]
    YAN J, WANG H, JIN B, et al. Cu-MOF derived Cu/Cu2O/C nanocomposites for the efficient thermal decomposition of ammonium perchlorate[J]. Journal of Solid State Chemistry, 2021, 297: 122060. doi: 10.1016/j.jssc.2021.122060
    [36]
    KHAN I A, BADSHAH A, NADEEM M A, et al. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19609-19620. doi: 10.1016/j.ijhydene.2014.09.106
    [37]
    LIU H L, CHANG Z L, FU J, et al. A CuZn-BTC derived stable Cu/ZnO@SiO2 catalyst for ethanol dehydrogenation[J]. Applied Catalysis B:Environmental, 2023, 324: 122194. doi: 10.1016/j.apcatb.2022.122194
    [38]
    PAN J Y, BAI X T, LI Y Y, et al. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance[J]. Environment Research, 2022, 205: 112425. doi: 10.1016/j.envres.2021.112425
    [39]
    BAO L W, YANG S Q, HU T L, Cu-NPs@C nanosheets derived from a PVP-assisted 2d Cu-MOF with renewable ligand for high-efficient selective hydrogenation of 5-hydroxymethylfurfural[J]. ChemSusChem, 2022, 15(13): e202200392.
    [40]
    ZHANG G Q, LI Z, ZHENG H Y, et al. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Applied Catalysis B:Environmental, 2015, 179: 95-105. doi: 10.1016/j.apcatb.2015.05.001
    [41]
    ZHANG G Q, LI Z, ZHENG H Y, et al. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate[J]. Applied Surface Science, 2016, 390: 68-77. doi: 10.1016/j.apsusc.2016.08.054
    [42]
    WANG J, SHI R N, HAO P P, et al. Influence of oxygen-containing groups of activated carbon aerogels on copper/activated carbon aerogels catalyst and synthesis of dimethyl carbonate[J]. Journal of Materials Science, 2018, 53: 1833-18050 doi: 10.1007/s10853-017-1639-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (128) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return