Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WU Xiaona, WANG Yiyu, ZHAO Kai. Antibacterial mechanism of MXene and its composite hydrogel application in infective wound healing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3431-3445.
Citation: WU Xiaona, WANG Yiyu, ZHAO Kai. Antibacterial mechanism of MXene and its composite hydrogel application in infective wound healing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3431-3445.

Antibacterial mechanism of MXene and its composite hydrogel application in infective wound healing

Funds:  National Natural Science Foundation of China (No.32170844)
  • Received Date: 2023-09-27
  • Accepted Date: 2023-12-01
  • Rev Recd Date: 2023-11-14
  • Available Online: 2023-12-27
  • Publish Date: 2024-07-15
  • Infected wounds seriously endanger the quality of life and even life and health of human beings, so the development of antimicrobial biomaterials with high efficiency and few side effects for the repair of infected wounds has broad market prospects. Two-dimensional transition metal carbide (MXene) is a new type of two-dimensional sheet material with excellent antibacterial properties, and its antibacterial mechanism mainly includes physical capture theory, infrared thermal effect, reactive oxygen species (ROS) generation theory, intercellular molecular leakage theory, etc., so MXene is expected to become a safer, effective and broad-spectrum antibacterial method. Compared with simple hydrogels, MXene composite hydrogels made of hydrogels encapsulated with MXene have better antibacterial, antioxidant properties and photothermal effects. In this paper, the antimicrobial mechanism of MXene was reviewed, and the researches on the repair of infected wounds by MXene composite hydrogels were comprehensively reviewed and summarized in recent years.

     

  • loading
  • [1]
    ARNAOUTELI S, BAMFORD N C, STANLEY-WALL N R, et al. Bacillus subtilis biofilm formation and social interactions[J]. Nature Reviews Microbiology, 2021, 19(9): 600-614. doi: 10.1038/s41579-021-00540-9
    [2]
    EVELHOCH S R. Biofilm and chronic nonhealing wound infections[J]. Surgical Clinics, 2020, 100(4): 727-732.
    [3]
    QIAN L W, FOURCAUDOT A B, YAMANE K, et al. Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J]. Wound repair and regeneration, 2016, 24(1): 26-34. doi: 10.1111/wrr.12381
    [4]
    TANG Q, XUE N, DING X, et al. Role of wound microbiome, strategies of microbiota delivery system and clinical management[J]. Advanced Drug Delivery Reviews, 2022: 114671.
    [5]
    ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. doi: 10.1126/science.aaf3627
    [6]
    NEGUT I, GRUMEZESCU V, GRUMEZESCU A M. Treatment strategies for infected wounds[J]. Molecules, 2018, 23(9): 2392. doi: 10.3390/molecules23092392
    [7]
    WU J, PAN Z, ZHAO Z Y, et al. Anti-Swelling, Robust, and Adhesive Extracellular Matrix-Mimicking Hydrogel Used as Intraoral Dressing[J]. Advanced Materials, 2022, 34(20): 2200115. doi: 10.1002/adma.202200115
    [8]
    QI X, ZHU T, HU W, et al. Multifunctional polyacrylamide/hydrated salt/MXene phase change hydrogels with high thermal energy storage, photothermal conversion capability and strain sensitivity for personal healthcare[J]. Composites Science and Technology, 2023, 234: 109947. doi: 10.1016/j.compscitech.2023.109947
    [9]
    Zhu Y, Liu J, Guo T, et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding[J]. ACS nano, 2021, 15(1): 1465-1474. doi: 10.1021/acsnano.0c08830
    [10]
    HAESLER E, SWANSON T, OUSEY K, et al. Clinical indicators of wound infection and biofilm: reaching international consensus[J]. Journal of wound care, 2019, 28(Sup3b): s4-s12. doi: 10.12968/jowc.2019.28.Sup3b.S4
    [11]
    王娜, 李少侠, 曹娜娜, 等. 骨科创伤创面感染的病原菌分布及耐药性分析[J]. 中国卫生检验杂志, 2020, 30(14): 1695-1697.

    WANG Na, LI Shaoxia, CAO Nana, et al. Analysis of pathogenic bacteria distribution and drug resistance in orthopedic wound infection[J]. Chinese Journal of Health Laboratory Technology, 2020, 30(14): 1695-1697 (in Chinese).
    [12]
    吴敏, 朱祉冰, 石冰, 龚彩霞, 李杨. 预防性使用抗生素对唇裂术后创面感染的影响研究[J]. 华西口腔医学杂志, 2021, 39(6): 709-711.

    WU Min, ZHU Zhi-Bing, SHI Bing, GONG Cai-Xia, LI Yang. Effect of prophylactic antibiotics on postoperative wound infection of cleft lip[J]. West China Journal of Stomatology, 2019, 39(6): 709-711 (in Chinese).
    [13]
    LUO M, WANG M, NIU W, et al. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration[J]. Chemical Engineering Journal, 2021, 412: 128471. doi: 10.1016/j.cej.2021.128471
    [14]
    陈梦越, 李乐之. 慢性创面细菌生物膜相关微环境的研究进展[J]. 中华护理杂志, 2016, 51(12): 1483-1486. doi: 10.3761/j.issn.0254-1769.2016.12.015

    CHEN Mengyue, LI Lezhi. Research progress of bacterial biofilm-related microenvironment in chronic wound[J]. Chinese Journal of Nursing, 2016, 51(12): 1483-1486 (in Chinese) doi: 10.3761/j.issn.0254-1769.2016.12.015
    [15]
    FENG W, LUO H, WANG Y, et al. Ultrasonic assisted etching and delaminating of Ti3C2 Mxene[J]. Ceramics International, 2018, 44(6): 7084-7087. doi: 10.1016/j.ceramint.2018.01.147
    [16]
    LIU G, SHEN J, JI Y, et al. Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration[J]. Journal of Materials Chemistry A, 2019, 7(19): 12095-12104. doi: 10.1039/C9TA01507H
    [17]
    SAHA S, AROLE K, RADOVIC M, et al. One-step hydrothermal synthesis of porous Ti3C2Tz MXene/rGO gels for supercapacitor applications[J]. Nanoscale, 2021, 13(39): 16543-16553. doi: 10.1039/D1NR02114A
    [18]
    SHEN B, LIAO X, ZHANG X, et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors[J]. Electrochimica Acta, 2022, 413: 140144. doi: 10.1016/j.electacta.2022.140144
    [19]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced materials, 2014, 26(7): 992-1005. doi: 10.1002/adma.201304138
    [20]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [21]
    LUKATSKAYA M, MASHTALIR O, REN C, et al. Cation in-tercalation and high volumetric capacitance of two-dimen-sional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505. doi: 10.1126/science.1241488
    [22]
    NAGUIB, MICHAEL, et al. "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. " Advanced Materials 23.37(2011): 4248-4253.
    [23]
    NAGUIB M, BARSOUM M W, GOGOTSI Y. Ten years of progress in the synthesis and development of MXenes[J]. Advanced Materials, 2021, 33(39): 2103393. doi: 10.1002/adma.202103393
    [24]
    JASIM S A, HADI J M, OPULENCIA M J C, et al. MXene/metal and polymer nanocomposites: preparation, properties, and applications[J]. Journal of Alloys and Compounds, 2022, 917: 165404. doi: 10.1016/j.jallcom.2022.165404
    [25]
    WANG Y, YUE Y, CHENG F, et al. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano. 2022;16(2): 1734-1758.
    [26]
    SEIDI F, ARABI SHAMSABADI A, DADASHI FIROUZJAEI M, et al. MXenes Antibacterial Properties and Applications: A Review and Perspective[J]. Small, 2023, 19(14): 2206716. doi: 10.1002/smll.202206716
    [27]
    SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-21668. doi: 10.1039/C7TA05574A
    [28]
    LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T= OH, O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. doi: 10.1002/anie.201800887
    [29]
    LU B, ZHU Z, MA B, et al. 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects[J]. Small, 2021, 17(46): 2100946. doi: 10.1002/smll.202100946
    [30]
    李艳艳, 赵立环, 杨玉洁. MXene及其复合材料的抗菌纺织品研究进展[J]. 复合材料学报, 2023, 40(4): 1896-1912.

    LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress of antibacterial textiles from MXene and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1896-1912(in Chinese).
    [31]
    CHENG H, WANG J, YANG Y, et al. Ti3C2TX MXene modified with ZnTCPP with bacteria capturing capability and enhanced visible light photocatalytic antibacterial activity[J]. Small, 2022, 18(26): 2200857. doi: 10.1002/smll.202200857
    [32]
    HAN M, ZHANG D, SINGH A, et al. Versatility of infrared properties of MXenes[J]. Materials Today, 2023, 64: 31-39. doi: 10.1016/j.mattod.2023.02.024
    [33]
    CAI Z, MA Y, YUN M, et al. Multifunctional MXene/holey graphene films for electromagnetic interference shielding, Joule heating, and photothermal conversion[J]. Composites Part B:Engineering, 2023, 251: 110477. doi: 10.1016/j.compositesb.2022.110477
    [34]
    ZHANG D, HUANG L, SUN D W, et al. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus[J]. Chemical Engineering Journal, 2023, 452: 139078. doi: 10.1016/j.cej.2022.139078
    [35]
    HU W , PENG C , LUO W , et al. Graphene-based antibacterial paper. ACS Nano 4: 4317-4323[J]. Acs Nano, 2010, 4(7): 4317-4323.
    [36]
    PANDEY R P, RASHEED P A, GOMEZ T, et al. Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets[J]. ACS Applied Nano Materials, 2020, 3(11): 11372-11382. doi: 10.1021/acsanm.0c02463
    [37]
    LEI J, SUN L, HUANG S, et al. The antimicrobial peptides and their potential clinical applications[J]. American journal of translational research, 2019, 11(7): 3919.
    [38]
    EPAND R M, EPAND R F. Domains in bacterial membranes and the action of antimicrobial agents[J]. Molecular BioSystems, 2009, 5(6): 580-587. doi: 10.1039/b900278m
    [39]
    LEE O S, MADJET M E, MAHMOUD K A. Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer[J]. Nano Letters, 2021, 21(19): 8510-8517. doi: 10.1021/acs.nanolett.1c01986
    [40]
    HOLZER-GEISSLER J C J, SCHWINGENSCHUH S, ZACHARIAS M, et al. The impact of prolonged inflammation on wound healing[J]. Biomedicines, 2022, 10(4): 856. doi: 10.3390/biomedicines10040856
    [41]
    VELNAR T, BAILEY T, SMRKOLJ V. The wound healing process: an overview of the cellular and molecular mechanisms[J]. Journal of international medical research, 2009, 37(5): 1528-1542. doi: 10.1177/147323000903700531
    [42]
    WANG D, ZHANG Y, LU X, et al. Chemical formation of soft metal electrodes for flexible and wearable electronics[J]. Chemical Society Reviews, 2018, 47(12): 4611-4641. doi: 10.1039/C7CS00192D
    [43]
    YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6): 1642-1667. doi: 10.1039/C8CS00595H
    [44]
    NEGUT I, GRUMEZESCU V, GRUMEZESCU A M. Treatment strategies for infected wounds[J]. Molecules, 2018, 23(9): 2392. doi: 10.3390/molecules23092392
    [45]
    PARNHAM A, BOUSFIELD C. The influence of matrix metalloproteases and biofilm on chronic wound healing: a discussion. Br J Community Nurs. 2018;23(Sup3): S22-S29
    [46]
    WEI C, TANG P, TANG Y, et al. Sponge-Like Macroporous Hydrogel with Antibacterial and ROS Scavenging Capabilities for Diabetic Wound Regeneration[J]. Advanced Healthcare Materials, 2022, 11(20): 2200717. doi: 10.1002/adhm.202200717
    [47]
    LI M, ZHANG Y, LIAN L, et al. Flexible Accelerated-Wound-Healing Antibacterial MXene-Based Epidermic Sensor for Intelligent Wearable Human-Machine Interaction[J]. Advanced Functional Materials, 2022, 32(47): 2208141. doi: 10.1002/adfm.202208141
    [48]
    SU Y, ZHANG X, WEI Y, et al. Nanocatalytic hydrogel with rapid photodisinfection and robust adhesion for fortified cutaneous regeneration[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6354-6370.
    [49]
    DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metalions[J]. Advanced Materials, 2019, 31(43): 1902432. doi: 10.1002/adma.201902432
    [50]
    LIN Z, LIU J, PENG W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS nano, 2020, 14(2): 2109-2117. doi: 10.1021/acsnano.9b08832
    [51]
    LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247. doi: 10.1021/jacs.7b07818
    [52]
    XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications[J]. Advanced Functional Materials, 2020, 30(47): 2000712. doi: 10.1002/adfm.202000712
    [53]
    LI Y, FU R, DUAN Z, et al. Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing[J]. Acs Nano, 2022, 16(5): 7486-7502. doi: 10.1021/acsnano.1c10575
    [54]
    HU Y, ZENG Q, HU Y, et al. MXene/zinc ion embedded agar/sodium alginate hydrogel for rapid and efficient sterilization with photothermal and chemical synergetic therapy[J]. Talanta, 2024, 266: 125101. doi: 10.1016/j.talanta.2023.125101
    [55]
    HAO S, HAN H, YANG Z, et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials[J]. Nano-Micro Letters, 2022, 14(1): 178. doi: 10.1007/s40820-022-00901-w
    [56]
    CHEN R, TANG H, DAI Y, et al. Robust bioinspired mxene–hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications[J]. ACS nano, 2022, 16(11): 19124-19132. doi: 10.1021/acsnano.2c08163
    [57]
    YANG X, ZHANG C, DENG D, et al. Multiple stimuli-responsive MXene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing[J]. Small, 2022, 18(5): 2104368. doi: 10.1002/smll.202104368
    [58]
    MAO L, HU S, GAO Y, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced healthcare materials, 2020, 9(19): 2000872. doi: 10.1002/adhm.202000872
    [59]
    ZHU H, DAI W, WANG L, et al. Electroactive oxidized alginate/gelatin/MXene (Ti3C2Tx) composite hydrogel with improved biocompatibility and self-healing property[J]. Polymers, 2022, 14(18): 3908. doi: 10.3390/polym14183908
    [60]
    XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie, 2016, 128(47): 14789-14794. doi: 10.1002/ange.201606643
    [61]
    CAO Y, WU T, ZHANG K, et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. Acs Nano, 2019, 13(2): 1499-1510.
    [62]
    LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano letters, 2017, 17(1): 384-391. doi: 10.1021/acs.nanolett.6b04339
    [63]
    FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Advanced Functional Materials, 2019, 29(22): 1901942. doi: 10.1002/adfm.201901942
    [64]
    LIU Y, XIAO Y, CAO Y, et al. Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria[J]. Advanced Functional Materials, 2020, 30(35): 2003196. doi: 10.1002/adfm.202003196
    [65]
    ZHENG Y, YAN Y, LIN L, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection[J]. Acta Biomaterialia, 2022, 142: 113-123. doi: 10.1016/j.actbio.2022.02.019
    [66]
    ZHANG P, YANG X J, LI P, et al. Fabrication of novel MXene (Ti3C2Tx)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties[J]. Soft Matter, 2020, 16(1): 162-169. doi: 10.1039/C9SM01985E
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (201) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return