Turn off MathJax
Article Contents
WANG Zhihang, BAI Erlei, REN Biao, et al. Mechanical properties of concrete modified by graphene oxide grafted carbon fiber reinforcement[J]. Acta Materiae Compositae Sinica.
Citation: WANG Zhihang, BAI Erlei, REN Biao, et al. Mechanical properties of concrete modified by graphene oxide grafted carbon fiber reinforcement[J]. Acta Materiae Compositae Sinica.

Mechanical properties of concrete modified by graphene oxide grafted carbon fiber reinforcement

Funds:  National Natural Science Foundation of China (52278287)
  • Received Date: 2023-11-14
  • Accepted Date: 2023-12-21
  • Rev Recd Date: 2023-12-11
  • Available Online: 2024-01-08
  • In order to enhance the interface properties of carbon fiber/concrete matrix, and investigate the effects of graphene oxide grafted carbon fiber reinforcement (CF-GO) on the mechanical properties of concrete, by using amino silane as bridge material, carbon fiber and graphene oxide were tightly bonded through chemical bonds and graphene oxide grafted carbon fiber reinforcement (CF-GO) was prepared. The microstructure and functional groups of CF-GO were characterized by scanning electron microscopy and infrared spectroscopy. Graphene oxide was successfully grafted to the surface of carbon fiber and the interfacial shear strength of CF-GO was tested. CF-GO modified concrete (CF-GO/C) was prepared, its mechanical properties were tested and compared with those of carbon fiber modified concrete. In addition, the modification mechanism of CF-GO on the mechanical properties of concrete was analyzed. The results show that the interfacial shear strength of CF-GO increases by 25.37% compared with that of carbon fiber. With the increase of CF-GO content, the flexural and compressive strength of CF-GO/C first increase and then decrease. The optimal content of CF-GO is 0.3%, and the optimal content of carbon fiber is 0.2%. The flexural and compressive strength of CF-GO/C increase by 33.21% and 24.63% respectively with the optimal CF-GO content. Graphene oxide on the surface of CF-GO enhances the interface of CF-GO/concrete matrix physically and chemically by improving the mechanical bite between CF-GO and concrete matrix and promoting the formation of hydration products on the surface of CF-GO.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return