Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LEI Lan, HAN Wenjia, LOU Jiang. Research progress of single/dual network liquid crystal elastomers based on dynamic bonds[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3376-3392.
Citation: LEI Lan, HAN Wenjia, LOU Jiang. Research progress of single/dual network liquid crystal elastomers based on dynamic bonds[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3376-3392.

Research progress of single/dual network liquid crystal elastomers based on dynamic bonds

Funds:  National Natural Science Foundation of China (No. 22308179); Natural Science Foundation of Shandong Province (No. ZR2022QB170); the Foundation (No. GZKF202128) of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences; The Talent Research project of Qilu University of Technology, Shandong Acadamy of Sciences (2023RCKY175)
  • Received Date: 2023-10-07
  • Accepted Date: 2023-12-23
  • Rev Recd Date: 2023-12-07
  • Available Online: 2024-01-17
  • Publish Date: 2024-07-15
  • Liquid crystal elastomers (LCEs) containing dynamic cross-linking bonds are capable of undergoing macroscopic motion through alterations in volume or shape in response to external stimuli, including light, electricity, or heat. These materials demonstrate remarkable molecular cooperative effects and adaptive properties, offering considerable potential in the fields of soft robotics, artificial muscles, and microfluidics. Effective control of the internal liquid crystal orientation in LCEs is essential for achieving reversible deformation. The breakage and reformation of dynamic bonds not only decouples the construction of cross-linked networks and orientation control, but also enhances the reprocessing properties of materials, enabling new functionalities like remodeling deformation, self-healing, and shape memory. Therefore, the deliberate design and construction of cross-linked network structures, including the selection of cross-linking agents, their structures, and cooperative effects of various networks, are crucial for producing liquid crystal elastomers with exceptional performance and multifunctional integration. This review comprehensively discusses advancements in the preparation and application of LCEs, encompassing liquid crystal orientation control and single/double dynamic cross-linking networks (involving dynamic non-covalent and covalent bonds), and delineates future prospects for development in this field.

     

  • loading
  • [1]
    WANG Y C, LIU J Q, YANG S. Multi-functional liquid crystal elastomer composites[J]. Applied Physics Reviews, 2022, 9(1): 011301. doi: 10.1063/5.0075471
    [2]
    BISOYI H K, LI Q. Liquid Crystals: Versatile Self-Organized Smart Soft Materials[J]. Chemical Reviews, 2022, 122(5): 4887-4926. doi: 10.1021/acs.chemrev.1c00761
    [3]
    HERBERT K M, FOWLER H E, MCCRACKEN J M, et al. Synthesis and alignment of liquid crystalline elastomers[J]. Nature Reviews Materials, 2022, 7(1): 23-38.
    [4]
    SAED M O, GABLIER A, TERENTJEV E M. Exchangeable Liquid Crystalline Elastomers and Their Applications[J]. Chemical Reviews, 2022, 122(5): 4927-4945. doi: 10.1021/acs.chemrev.0c01057
    [5]
    PANG X. L. , LV J. A. , ZHU C. Y. , et al. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators[J]. Advanced Materials, 2019, 31: 1904224.
    [6]
    DIRK J. BROER H F, KATSUMI K. In-situ photopolymerization of an oriented liquid-crystalline acrylate[J]. Macromolecular Chemistry and Physics, 1988, 189(1): 185-194. doi: 10.1002/macp.1988.021890117
    [7]
    KUPFER J, FINKELMANN H. Nematic Liquid Single-Crystal Elastomers[J]. Makromolekulare Chemie-Rapid Communications, 1991, 12(12): 717-726. doi: 10.1002/marc.1991.030121211
    [8]
    LEI L, HAN L, MA H, et al. Synthesis of well-defined PS-based Azo-liquid crystals with control of phase transitions and photo-behaviors for liquid crystal networks with photomechanical deformation[J]. Polymer, 2020, 203: 122749. doi: 10.1016/j.polymer.2020.122749
    [9]
    YAKACKI C M, SAED M, NAIR D P, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction[J]. RSC Advances, 2015, 5(25): 18997-19001. doi: 10.1039/C5RA01039J
    [10]
    AHIR S V, TAJBAKHSH A R, TERENTJEV E M. Self-assembled shape-memory fibers of triblock liquid-crystal polymers[J]. Advanced Functional Materials, 2006, 16(4): 556-560. doi: 10.1002/adfm.200500692
    [11]
    SAED M O, AMBULO C P, KIM H, et al. Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators[J]. Advanced Functional Materials, 2019, 29(3): 1806412. doi: 10.1002/adfm.201806412
    [12]
    JIN B J, LIU J Q, SHI Y P, et al. Solvent-Assisted 4D Programming and Reprogramming of Liquid Crystalline Organogels[J]. Advanced Materials, 2022, 34(5): 2107855. doi: 10.1002/adma.202107855
    [13]
    张宇白, 吉岩. 基于动态共价键的液晶弹性体逆三维结构加工方法研究进展[J]. 液晶与显示, 2022, 37(2): 199-216. doi: 10.37188/CJLCD.2021-0309

    ZHANG Y B, JI Y. Research progress in processing methods of reversible three-dimensional structures of liquid-crystalline elastomers based on dynamic covalent bonds[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 199-216(in Chinese). doi: 10.37188/CJLCD.2021-0309
    [14]
    LV J A, LIU Y Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179-184. doi: 10.1038/nature19344
    [15]
    XU B, ZHU C Y, QIN L, et al. Light-Directed Liquid Manipulation in Flexible Bilayer Microtubes[J]. Small, 2019, 15(24): 1901847. doi: 10.1002/smll.201901847
    [16]
    CHEN M S, YAO B J, KAPPL M, et al. Entangled Azobenzene-Containing Polymers with Photoinduced Reversible Solid-to-Liquid Transitions for Healable and Reprocessable Photoactuators[J]. Advanced Functional Materials, 2020, 30(4): 1906752. doi: 10.1002/adfm.201906752
    [17]
    LUGGER S J D, HOUBEN S J A, FOELEN Y, et al. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties[J]. Chemical Reviews, 2022, 122(5): 4946-4975. doi: 10.1021/acs.chemrev.1c00330
    [18]
    FAN Y X, LIU T, LI Y Z, et al. One-Step Manufacturing of Supramolecular Liquid-Crystal Elastomers by Stress-Induced Alignment and Hydrogen Bond Exchange[J]. Angewandte Chemie-International Edition, 2023, 62(37): e202308793. doi: 10.1002/anie.202308793
    [19]
    ZHAO X, CHEN Y, PENG B, et al. A Facile Strategy for the Development of Recyclable Multifunctional Liquid Crystal Polymers via Post-Polymerization Modification and Ring-Opening Metathesis Polymerization[J]. Angewandte Chemie-International Edition, 2023, 62(21): e202300699. doi: 10.1002/anie.202300699
    [20]
    VERPAALEN R C P, DEBIJE M G, BASTIAANSEN C M, et al. Programmable helical twisting in oriented humidity-responsive bilayer films generated by spray-coating of a chiral nematic liquid crystal[J]. Journal of Materials Chemistry A, 2018, 6(36): 17724-17729. doi: 10.1039/C8TA06984K
    [21]
    WANI O M, VERPAALEN R, ZENG H, et al. An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks[J]. Advanced Materials, 2019, 31(2): 1805985. doi: 10.1002/adma.201805985
    [22]
    LAN R C, SUN J, SHEN C, et al. Reversibly and Irreversibly Humidity-Responsive Motion of Liquid Crystalline Network Gated by SO2 Gas[J]. Advanced Functional Materials, 2019, 29(23): 1900013. doi: 10.1002/adfm.201900013
    [23]
    LEWIS K L, HERBERT K M, MATAVULJ V M, et al. Programming Orientation in Liquid Crystalline Elastomers Prepared with Intra-Mesogenic Supramolecular Bonds[J]. Acs Applied Materials & Interfaces, 2023, 15(2): 3467-3475.
    [24]
    WANG L, ZHOU Y, MA S K, et al. Reprocessable and healable room temperature photoactuators based on a main-chain azobenzene liquid crystalline poly(ester-urea)[J]. Journal of Materials Chemistry C, 2021, 9(38): 13255-13265. doi: 10.1039/D1TC03064G
    [25]
    MAMIYA J I, YOSHITAKE A, KONDO M, et al. Is chemical crosslinking necessary for the photoinduced bending of polymer films?[J]. Journal of Materials Chemistry, 2008, 18(1): 63-65. doi: 10.1039/B715855F
    [26]
    FU S Y, ZHANG H, ZHAO Y. Optically and thermally activated shape memory supramolecular liquid crystalline polymers[J]. Journal of Materials Chemistry C, 2016, 4(22): 4946-4953. doi: 10.1039/C6TC00718J
    [27]
    LIU M J, LIU P, LU G, et al. Multiphase-Assembly of Siloxane Oligomers with Improved Mechanical Strength and Water-Enhanced Healing[J]. Angewandte Chemie-International Edition, 2018, 57(35): 11242-11246. doi: 10.1002/anie.201805206
    [28]
    YU H T, FENG Y Y, GAO L, et al. Self-Healing High Strength and Thermal Conductivity of 3D Graphene/PDMS Composites by the Optimization of Multiple Molecular Interactions[J]. Macromolecules, 2020, 53(16): 7161-7170. doi: 10.1021/acs.macromol.9b02544
    [29]
    NI B, XIE H L, TANG J, et al. A self-healing photoinduced-deformable material fabricated by liquid crystalline elastomers using multivalent hydrogen bonds as cross-linkers[J]. Chemical Communications, 2016, 52(67): 10257-10260. doi: 10.1039/C6CC04199J
    [30]
    CHEN C, LIU Y Y C, HE X M, et al. Multiresponse Shape-Memory Nanocomposite with a Reversible Cycle for Powerful Artificial Muscles[J]. Chemistry of Materials, 2021, 33(3): 987-997. doi: 10.1021/acs.chemmater.0c04170
    [31]
    MO F N, BAN J F, PAN L L, et al. Liquid crystalline polyurethane composites based on supramolecular structure with reversible bidirectional shape memory and multi-shape memory effects[J]. New Journal of Chemistry, 2019, 43(1): 103-110. doi: 10.1039/C8NJ05451G
    [32]
    LU X. L. , ZHANG H. , FEI G. X. , et al. Liquid-Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation[J]. Advanced Materials, 2018, 30: 1706597.
    [33]
    YANG Y, TERENTJEV E M, ZHANG Y B, et al. Reprocessable Thermoset Soft Actuators[J]. Angewandte Chemie-International Edition, 2019, 58(48): 17474-17479. doi: 10.1002/anie.201911612
    [34]
    LIANG H, WU Y H, ZHANG Y B, et al. Elastomers Grow into Actuators[J]. Advanced Materials, 2023, 35(12): 2209853. doi: 10.1002/adma.202209853
    [35]
    LIANG H, ZHANG S, LIU Y W, et al. Merging the Interfaces of Different Shape-Shifting Polymers Using Hybrid Exchange Reactions[J]. Advanced Materials, 2023, 35(1): 2202462. doi: 10.1002/adma.202202462
    [36]
    YAO Y J, HE E J, XU H T, et al. Fabricating liquid crystal vitrimer actuators far below the normal processing temperature[J]. Materials Horizons, 2023, 10(5): 1795-1805. doi: 10.1039/D3MH00184A
    [37]
    UBE T, TSUNODA H, KAWASAKI K, et al. Photoalignment in Polysiloxane Liquid-Crystalline Elastomers with Rearrangeable Networks[J]. Advanced Optical Materials, 2021, 9(9): 2100053. doi: 10.1002/adom.202100053
    [38]
    MA J Z, YANG Y Z, VALENZUELA C, et al. Mechanochromic, Shape-Programmable and Self-Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds[J]. Angewandte Chemie-International Edition, 2022, 61(9): e202116219. doi: 10.1002/anie.202116219
    [39]
    SEAD M O, GABLIER A, TERENTEJV E M. Liquid Crystalline Vitrimers with Full or Partial Boronic-Ester Bond Exchange[J]. Advanced Functional Materials, 2020, 30(3): 1906458. doi: 10.1002/adfm.201906458
    [40]
    TANG D, ZHANG L, ZHANG X Y, et al. Bio-Mimetic Actuators of a Photothermal-Responsive Vitrimer Liquid Crystal Elastomer with Robust, Self-Healing, Shape Memory, and Reconfigurable Properties[J]. Acs Applied Materials & Interfaces, 2022, 14(1): 1929-1939.
    [41]
    RIM M W , JUNG D Y, YU D M, et al. Multifunctional Liquid Crystal Polymer Networks: AzobenzeneBased Monoacrylate Molecules Impart a Photothermal Effect to Polymer Networks[J]. ACS Applied Polymer Materials, 2023, 5(2): 1325-1333.
    [42]
    HUANG S, SHEN Y K, BISOYI H K, et al. Covalent Adaptable Liquid Crystal Networks Enabled by Reversible Ring-Opening Cascades of Cyclic Disulfides[J]. Journal of the American Chemical Society, 2021, 143(32): 12543-12551. doi: 10.1021/jacs.1c03661
    [43]
    JI S B, CAO W, YU Y, et al. Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis[J]. Angewandte Chemie-International Edition, 2014, 53(26): 6781-6785. doi: 10.1002/anie.201403442
    [44]
    IRIGOYEN M, FERNÁNDEZ A, RUIZ A, et al. Diselenide Bonds as an Alternative to Outperform the Efficiency of Disulfides in Self-Healing Materials[J]. The Journal of Organic Chemistry, 2019, 84(7): 4200-4210. doi: 10.1021/acs.joc.9b00014
    [45]
    VALENZUELA C, CHEN Y H, WANG L, et al. Functional Liquid Crystal Elastomers Based on Dynamic Covalent Chemistry[J]. Chemistry-A European Journal, 2022, 28(70): e202201957. doi: 10.1002/chem.202201957
    [46]
    CHEN L, BISOYI H K, HUANG Y L, et al. Healable and Rearrangeable Networks of Liquid Crystal Elastomers Enabled by Diselenide Bonds[J]. Angewandte Chemie-International Edition, 2021, 60(30): 16394-16398. doi: 10.1002/anie.202105278
    [47]
    BLANKE M, POSTULKA L, D’ACIERNO F, et al. Manipulation of Liquid Crystalline Properties by Dynamic Covalent Chemistry-En Route to Adaptive Materials[J]. ACS Applied Material Interfaces 2022, 14(14), 16755-16763.
    [48]
    LIN X Y, GABLIER A, TERENTJEV E M. Imine-Based Reactive Mesogen and Its Corresponding Exchangeable Liquid Crystal Elastomer[J]. Macromolecules 2022, 55(3), 821-830.
    [49]
    HUANG X, QIN L, WANG J L, et al. Multiple Shape Manipulation of Liquid Crystal Polymers Containing Diels-Alder Network[J]. Advanced Functional Materials, 2022, 32(51): 2208312. doi: 10.1002/adfm.202208312
    [50]
    JIANG Z C, XIAO Y Y, YIN L, et al. “Self-Lockable” Liquid Crystalline Diels-Alder Dynamic Network Actuators with Room Temperature Programmability and Solution Reprocessability[J]. Angewandte Chemie-International Edition, 2020, 59(12): 4925-4931. doi: 10.1002/anie.202000181
    [51]
    李蒙. 高强度自修复液晶弹性体材料的合成及性能研究 [D]. 常州: 常州大学, 2022.

    LI Meng. Synthesis and performance study of high-strength self-healing liquid crystal elastomer materials [D]. Changzhou: Changzhou University, 2022(in Chinese).
    [52]
    LU H F, WANG M, CHEN X M, et al. Interpenetrating Liquid-Crystal Polyurethane/Polyacrylate Elastomer with Ultrastrong Mechanical Property[J]. Journal of the American Chemical Society, 2019, 141(36): 14364-14369. doi: 10.1021/jacs.9b06757
    [53]
    LI M, DAI S P, DONG X, et al. High-Strength, Large-Deformation, Dual Cross-Linking Network Liquid Crystal Elastomers Based on Quadruple Hydrogen Bonds[J]. Langmuir, 2022, 38(4): 1560-1566. doi: 10.1021/acs.langmuir.1c03010
    [54]
    JIANG Y Y, DONG X, ZHU S J, et al. Skin-friendly and antibacterial monodomain liquid crystal elastomer actuator[J]. Colloids and Surfaces B-Biointerfaces, 2023, 222: 113110. doi: 10.1016/j.colsurfb.2022.113110
    [55]
    LIN X Y, ZOU W K, TERENTJEV E M. Double Networks of Liquid-Crystalline Elastomers with Enhanced Mechanical Strength[J]. Macromolecules, 2022, 55(3): 810-820. doi: 10.1021/acs.macromol.1c02065
    [56]
    LU X L, AMBULO C P, WANG S T, et al. 4D-Printing of Photoswitchable Actuators[J]. Angewandte Chemie-International Edition, 2021, 60(10): 5536-5543. doi: 10.1002/anie.202012618
    [57]
    YUAN S J, RONG Z M, ZHANG M Q, et al. Enhancement of intrinsic thermal conductivityof liquid crystalline epoxy through the strategyof interlocked polymer networks[J]. Materials Chemistry Frontiers, 2022, 6(9): 1137-1149. doi: 10.1039/D2QM00090C
    [58]
    YUAN S J, RONG Z M, ZHANG M Q, et al. Increasing Strengths of Liquid Crystalline Polymers While Minimizing Anisotropy via Topological Rearrangement Assisted Bi-Directional Stretching of Reversibly Interlocked Macromolecular Networks[J]. Applied Materials Today, 2022, 29: 101643. doi: 10.1016/j.apmt.2022.101643
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (147) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return