Volume 41 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
GONG Yi, LI Xiaoyan, ZHANG Yishuo, et al. Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1327-1337. doi: 10.13801/j.cnki.fhclxb.20230817.004
Citation: GONG Yi, LI Xiaoyan, ZHANG Yishuo, et al. Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1327-1337. doi: 10.13801/j.cnki.fhclxb.20230817.004

Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites

doi: 10.13801/j.cnki.fhclxb.20230817.004
Funds:  National Natural Science Foundation of China (41761090; 12105044); Graduate Innovation Foundation of East China University of Technology of Jiangxi Province (YC2022-s614)
  • Received Date: 2023-06-02
  • Accepted Date: 2023-08-03
  • Rev Recd Date: 2023-07-16
  • Available Online: 2023-08-18
  • Publish Date: 2024-03-01
  • In order to achieve the goal of green and efficient energy utilization, how to deal with uranium-containing waste generated during the development of nuclear energy has become an increasingly prominent environmental problem. The CaTiO3 materials were initially prepared using the solvent-thermal method. Subsequently, the carbon material was synthesized by grinding a mixture of CaTiO3 and pomegranate peel carbon material, resulting in the formation of carbon-loaded CaTiO3 (C@CaTiO3). Modern characterization techniques were employed to analyze the morphological and compositional changes of C@CaTiO3 before and after its reaction with U(VI). The performance of the material in removing uranium from the solution was evaluated using a static experimental method. The research findings revealed that, under the conditions of pH=3.5, an initial concentration of U(VI) of 25 mg·L−1, reaction time of 40 min, and temperature of 25℃, the material exhibited a U(VI) removal rate of 96.26% with a corresponding removal capacity of 119.21 mg·g−1. The reaction mechanism between C@CaTiO3 and U(VI) was investigated using adsorption kinetics models, isothermal adsorption models, and thermodynamic models. The results demonstrate that the adsorption process of U(VI) by C@CaTiO3 is a spontaneous endothermic reaction. The removal of U(VI) from the solution using C@CaTiO3 involved both adsorption and reduction, with physical and chemical adsorption coexisting and surface monolayer chemical adsorption being the predominant mechanism. Photocatalytic reduction played a major role in the reduction process.

     

  • loading
  • [1]
    YI L, GAO B, LIU H, et al. Characteristics and assessment of toxic metal contamination in surface water and sediments near a uranium mining area[J]. International Journal of Environmental Research and Public Health,2020,17(2):548. doi: 10.3390/ijerph17020548
    [2]
    LU Z, LIU Z. Pollution characteristics and risk assessment of uranium and heavy metals of agricultural soil around the uranium tailing reservoir in Southern China[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,318(2):923-933. doi: 10.1007/s10967-018-6081-0
    [3]
    ZHOU Y, XIAO J, HU R, et al. Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium[J]. Journal of Molecular Liquids,2020,303:112659. doi: 10.1016/j.molliq.2020.112659
    [4]
    OUYANG Y, ZHAO L, DENG M, et al. Preparation of diethylenetriamine-functionalized thiosulfate intercalated ZnNiAl-LDHs and its removal behavior and mechanism of U(VI)[J]. Chemical Engineering Journal,2023,452:139486. doi: 10.1016/j.cej.2022.139486
    [5]
    CUI X, YANG Z, ZHANG X, et al. Fabrication of novel heterojunction of (1D) Nb2O5 nanorod/(0D) CdS nanoparticles for efficient removal of U(VI) from water[J]. Applied Surface Science,2022,599:154027. doi: 10.1016/j.apsusc.2022.154027
    [6]
    李楠. 高效铀吸附材料的设计制备及性能研究[D]. 济南: 山东大学, 2021.

    LI Nan. Study on preparation and properties of efficient uranium adsorbents[D]. Jinan: Shandong University, 2021(in Chinese).
    [7]
    郭梅. 含铀废水处理方法进展[J]. 科技创新与应用, 2020(34):119-120.

    GUO Mei. Progress in treatment of uranium containing wastewater[J]. Technology Innovation and Application,2020(34):119-120(in Chinese).
    [8]
    LI P, WANG J J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science,2019,483:670-676. doi: 10.1016/j.apsusc.2019.03.330
    [9]
    GUO Y D, LI L, LI Y R, et al. Adsorption and photocatalytic reduction activity of uranium (VI) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,310(2):883-890. doi: 10.1007/s10967-016-4820-7
    [10]
    李小燕, 付晓辉, 李冠超, 等. 岩棉负载纳米零价铁去除溶液中U(VI)的性能和机制[J]. 材料导报, 2022, 36(20):70-76.

    LI Xiaoyan, FU Xiaohui, LI Guanchao, et al. Performance and mechanism on removal of U(VI) from aqueous solution by nano zero-valent iron loaded on rock wool[J]. Materials Reports,2022,36(20):70-76(in Chinese).
    [11]
    何登武, 李冠超, 李小燕, 等. CuInS2光催化材料制备及光催化还原溶液中U(VI)的性能[J]. 有色金属工程, 2021, 11(7):18-24.

    HE Dengwu, LI Guanchao, LI Xiaoyan, et al. Preparation of CuInS2 photocatalytic material and performance of U(VI) in photocatalytic reduction solution[J]. Nonferrous Metals,2021,11(7):18-24(in Chinese).
    [12]
    李小燕, 王杨, 何登武, 等. Cu掺杂Bi2WO6的光催化还原U(VI)特性[J]. 硅酸盐学报, 2021, 49(5):1025-1032. doi: 10.14062/j.issn.0454-5648.20200462

    LI Xiaoyan, WANG Yang, HE Dengwu, et al. Photocatalytic reduction of U(VI) with Cu-doped Bi2WO6[J]. Journal of the Chinese Ceramic Society,2021,49(5):1025-1032(in Chinese). doi: 10.14062/j.issn.0454-5648.20200462
    [13]
    文志刚, 陈文芹, 唐丹, 等. 镨掺杂钛酸钙荧光粉的制备及其发光性能[J]. 广东化工, 2019, 46(5):43-44.

    WEN Zhigang, CHEN Wenqin, TANG Dan, et al. Synthesis of CaTiO3:Pr3+ phosphors and its luminescent property[J]. Guangdong Chemical Industry,2019,46(5):43-44(in Chinese).
    [14]
    CESCONETO F R, BORLAF M, NIETO M I, et al. Synthesis of CaTiO3 and CaTiO3/TiO2 nanoparticulate compounds through Ca2+/TiO2 colloidal sols: Structural and photocatalytic characterization[J]. Ceramics International,2018,44(1):301-309. doi: 10.1016/j.ceramint.2017.09.173
    [15]
    TEH Y W, CHEE M K T, KONG X Y, et al. An insight into perovskite-based photocatalysts for artificial photosynthesis[J]. Sustainable Energy & Fuels,2020,4(3):973-984.
    [16]
    CAVALCANTE L S, MARQUES V S, SCZANCOSKI J C, et al. Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces[J]. Chemical Engineering Journal,2008,143(1-3):299-307. doi: 10.1016/j.cej.2008.05.017
    [17]
    王昱莹, 付晓辉, 王杨, 等. CaTiO3去除溶液中U(VI)的性能研究[J]. 有色金属(冶炼部分), 2021(8):134-138.

    WANG Yuying, FU Xiaohui, WANG Yang, et al. Performance study on removal of U(VI) from aqueous solution by nanoscale CaTiO3[J]. Nonferrous Metals (Extractive Metallurgy),2021(8):134-138(in Chinese).
    [18]
    成荣敏, 徐虹, 单瑞平, 等. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报, 2020, 41(6):1345-1351.

    CHENG Rongmin, XU Hong, SHAN Ruiping, et al. Influence factors of La-doped calcium titanate for photocatalytic H2 evolution under visible light[J]. Chemical Journal of Chinese Universities,2020,41(6):1345-1351(in Chinese).
    [19]
    孙德武, 宋沐遥, 李佳昕, 等. 钛酸钙纳米材料的改性及在光催化领域的研究进展[J]. 现代化工, 2022, 42(9):51-54.

    SUN Dewu, SONG Muyao, LI Jiaxin, et al. Modification of CaTiO3 nanomaterials and research progress on their application in photocatalytic field[J]. Modern Chemical Industry,2022,42(9):51-54(in Chinese).
    [20]
    HANG Y, SI Y, ZHOU Q, et al. Morphology-controlled synthesis of calcium titanate particles and adsorption kinetics, isotherms, and thermodynamics of Cd(II), Pb(II), and Cu(II) cations[J]. Journal of Hazardous Materials,2019,380:120789. doi: 10.1016/j.jhazmat.2019.120789
    [21]
    易兴权. CaTiO3光催化剂的制备及其掺杂改性研究[D]. 兰州: 兰州大学, 2017.

    YI Xingquan. Synthesis of CaTiO3 photocatalyst and its doping modification[D]. Lanzhou: Lanzhou University, 2017(in Chinese).
    [22]
    ZHAO J, YANG X, LIANG G, et al. Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI)[J]. Science of the Total Environment,2020,710:136289. doi: 10.1016/j.scitotenv.2019.136289
    [23]
    王虹茹, 刘惠平. TiO2/生物炭复合催化剂在染料废水处理中的应用[J]. 工业用水与废水, 2022, 53(6):11-15.

    WANG Ruhong, LIU Huiping. Application of TiO2/biochar composite catalyst for dyestuff wastewater treatment[J]. Industrial Water & Wastewater,2022,53(6):11-15(in Chinese).
    [24]
    刘蕊, 李松, 罗璇, 等. 功能化生物炭吸附水中无机污染物的研究进展[J]. 科学技术与工程, 2021, 21(27):11455-11462.

    LIU Rui, LI Song, LUO Xuan, et al. Adsorption of inorganic contamination in aqueous solution with multifunctionalized biochar: A review[J]. Science Technology and Engineering,2021,21(27):11455-11462(in Chinese).
    [25]
    FITO J, KEFENI K K, NKAMBULE T T I. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater[J]. Science of the Total Environment, 2022, 829: 154648.
    [26]
    金月正. 氧化锌/生物炭复合光催化材料制备及其降解抗生素废水研究[D]. 厦门: 厦门理工学院, 2022.

    JIN Yuezheng. Preparation of ZnO/biochar composite photocatalytic materials and study on degradation of antibiotic wastewater[D]. Xiamen: Xiamen University of Technology, 2022(in Chinese).
    [27]
    李法云, 吝美霞, 李晓桐, 等. 生物炭基复合材料制备及其在有机污染环境修复中的应用[J]. 应用技术学报, 2021, 21(4):306-316.

    LI Fayun, LIN Meixia, LI Xiaotong, et al. Preparation of biochar-based composites and its application in remediation of organic polluted environment[J]. Journal of Technology,2021,21(4):306-316(in Chinese).
    [28]
    KAMAL A, SALEEM M H, ALSHAYA H, et al. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalytic ability against different organic and inorganic pollutants[J]. Journal of Saudi Chemical Society,2022,26(3):101445. doi: 10.1016/j.jscs.2022.101445
    [29]
    李琦, 余敏, 姜珊, 等. 炭基钛酸钙的制备及其降解甲基橙的试验研究[J]. 工业用水与废水, 2021, 52(4):50-54.

    LI Qi, YU Min, JIANG Shan, et al. Experimental research on preparation of carbo-based calcium titanate and its performance on methyl orange degration[J]. Industrial Water & Wastewater,2021,52(4):50-54(in Chinese).
    [30]
    李思琦, 刘丽晓, 赖昌鹏, 等. BiOCl/桔子皮生物炭复合催化剂光催化降解环丙沙星[J]. 化工技术与开发, 2022, 51(11):54-57.

    LI Siqi, LIU Lixiao, LAI Changpeng, et al. Photocatalytic degradation of ciprofloxacin with BiOCl/orange peel biochar composite catalyst[J]. Technology & Development of Chemical Industry,2022,51(11):54-57(in Chinese).
    [31]
    LIU X, DU P, PAN W, et al. Immobilization of uranium(VI) by niobate/titanate nancheterojunction through combined adsorption and solar-light-driven photocareduction[J]. Applied Catalysis B: Environmental,2018,231:11-22. doi: 10.1016/j.apcatb.2018.02.062
    [32]
    鲁梦洁. 钛酸钙基复合材料的合成及光催化性能研究[D]. 武汉: 武汉纺织大学, 2022.

    LU Mengjie. Synthesis and photocatalytic properties of calcium titanate matrix composite[D]. Wuhan: Wuhan Textile University, 2022(in Chinese).
    [33]
    张飞飞. 多孔生物质炭及其复合物的制备与铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    ZHANG Feifei. The preparation and uranium adsorption properties of porous bio-derived carbon and its complexes[D]. Harbin: Harbin Engineering University, 2019(in Chinese).
    [34]
    李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能[J]. 复合材料学报, 2021, 38(8):2646-2654.

    LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica,2021,38(8):2646-2654(in Chinese).
    [35]
    ZHONG X, LIU Y, HOU T, et al. Effect of Bi2WO6 nanoflowers on the U(VI) removal from water: Roles of adsorption and photoreduction[J]. Journal of Environmental Chemical Engineering,2022,10(2):107170. doi: 10.1016/j.jece.2022.107170
    [36]
    ÖZCAN A S, GÖK Ö, ÖZCAN A. Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite[J]. Journal of Hazardous materials,2009,161(1):499-509. doi: 10.1016/j.jhazmat.2008.04.002
    [37]
    何登武. 乳化纳米零价铁/胶体Mg(OH)2复合材料去除溶液中U(VI)的效能与机制[D]. 南昌: 东华理工大学, 2022.

    HE Dengwu. The U(VI) removal efficiency and mechanism in aqueous solution by emulsified nano zero-valent iron/colloidal Mg(OH)2 composite material[D]. Nanchang: East China University of Technology, 2022(in Chinese).
    [38]
    何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4):376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012

    HE Yusheng, LI Zhong, XI Hongxia, et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption,2004,20(4):376-384(in Chinese). doi: 10.3321/j.issn:1001-5493.2004.04.012
    [39]
    WANG F, TAN L, LIU Q, et al. Biosorption characteristics of uranium (VI) from aqueous solution by pollen pini[J]. Journal of Environmental Radioactivity,2015,150:93-98.
    [40]
    FILIUS J D, LUMSDON D G, MEEUSSEN J C L, et al. Adsorption of fulvic acid on goethite[J]. Geochimica et Cosmochimica Acta,2000,64(1):51-60. doi: 10.1016/S0016-7037(99)00176-3
    [41]
    ZHAO D, YANG S, CHEN S, et al. Correction to: Effect of pH, ionic strength and humic substances on the adsorption of uranium (VI) onto Na-rectorite[J]. Journal of Radioanalytical and Nuclear Chemistry,2011,287:557-565. doi: 10.1007/s10967-010-0846-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (276) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return