Volume 41 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
SU Xingzhao, CHEN Xiaoming, ZHENG Hongwei, et al. Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1567-1576. doi: 10.13801/j.cnki.fhclxb.20230711.001
Citation: SU Xingzhao, CHEN Xiaoming, ZHENG Hongwei, et al. Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1567-1576. doi: 10.13801/j.cnki.fhclxb.20230711.001

Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites

doi: 10.13801/j.cnki.fhclxb.20230711.001
Funds:  Key Laboratory of Advanced Functional Composite Technology (6142906210406); Aero Engine and Gas Turbine Basic Science Center Project (P2022-B-IV-014-001)
  • Received Date: 2023-05-05
  • Accepted Date: 2023-06-28
  • Rev Recd Date: 2023-06-10
  • Available Online: 2023-07-11
  • Publish Date: 2024-03-01
  • Needled/stitched multi-scale interlocking composites have excellent interlaminar properties and are increasingly used in aerospace thermal structure composites. However, the effect of stitch technology on double incision interlaminar shear (DNS) performance of needle composites remains unclear. Using quartz satin fabric and quartz twill half-cut fabric as materials, quartz fiber-reinforced resin-based needle/stitch multi-scale interlocking composites with three kinds of stitch pattern and four kinds of stitch fiber bundles were designed and prepared. The DNS performance of the composite was tested and analyzed. The internal structure of the fabric was characterized by micro-CT, and the fracture morphology of the sample was observed by scanning electron microscopy (SEM) to clarify the mechanism of interlayer strengthening. The DNS behavior of needled/stitched multi-scale interlocking composites was further investigated by cohesive zone model (CZM) and Abaqus software, and the ultimate failure strength was predicted. The results show that the introduction of stitch technology greatly improves the interlamellar properties of the composite, and the maximum failure load of DNS reaches 32.73 MPa, which is 86.46% higher than that of the needled composite. The main failure modes of multi-scale interlocking composite DNS are matrix cracking, brittle fracture and pulling out of fiber bundle. At the same time, the simulation results are in good agreement with the DNS experimental results of needled/stitched multi-scale interlocking composites, and the maximum error is less than 8%, which proves that the cohesion model established in this paper can effectively predict the interlaminar shear performance of needled/stitched multi-scale interlocking composites.

     

  • loading
  • [1]
    LIM H J, CHOI H, LEE M J, et al. An efficient multi-scale model for needle-punched Cf/SiCm composite materials with experimental validation[J]. Composites Part B: Engi-neering,2021,217:108890. doi: 10.1016/j.compositesb.2021.108890
    [2]
    XIE W, YANG F, MENG S, et al. Perforation of needle-punched carbon-carbon composites during high-temperature and high-velocity ballistic impacts[J]. Composite Structures,2020,245:112224.
    [3]
    HAN M, ZHOU C, ZHANG H. A mesoscale beam-spring combined mechanical model of needle-punched carbon/carbon composite[J]. Composites Science and Technology,2018,168(10):371-380.
    [4]
    陈小明, 李晨阳, 李皎, 等. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(5):185-192. doi: 10.13475/j.fzxb.20200503408

    CHEN Xiaoming, LI Chenyang, LI Jiao, et al. Research progress of 3D needling[J]. Journal of Textile Research,2021,42(5):185-192(in Chinese). doi: 10.13475/j.fzxb.20200503408
    [5]
    SHARMA A, PATNAIK A. Experimental investigation on mechanical and thermal properties of marble dust particulate-filled needle-punched nonwoven jute fiber/epoxy composite[J]. Jom,2018,70(7):1284-1288. doi: 10.1007/s11837-018-2828-x
    [6]
    SHARMA A, CHOUDHARY M, AGARWAL P, et al. Effect of micro-sized marble dust on mechanical and thermo-mechanical properties of needle-punched nonwoven jute fiber reinforced polymer composites[J]. Polymer Composites,2021,42(2):881-898. doi: 10.1002/pc.25873
    [7]
    CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites–A review[J]. Composites Part A: Applied Science and Manufacturing,2016,85:12-30. doi: 10.1016/j.compositesa.2016.03.004
    [8]
    焦浩文, 陈冰, 左彬. C/SiC复合材料的制备及加工技术研究进展[J]. 航空材料学报, 2021, 41(1):19-34. doi: 10.11868/j.issn.1005-5053.2020.000067

    JIAO Haowen, CHEN Bing, ZUO Bin. Research progress inpreparation and processing technology of C/SiC composites[J]. Journal of Aeronautical Materials,2021,41(1):19-34(in Chinese). doi: 10.11868/j.issn.1005-5053.2020.000067
    [9]
    张鹏飞, 张立同, 殷小玮, 等. 三维针刺碳毡增强碳/氮化硼复合材料的力学和介电性能[J]. 复合材料学报, 2010, 27(4):15-20. doi: 10.13801/j.cnki.fhclxb.2010.04.027

    ZHANG Pengfei, ZHANG Litong, YIN Xiaowei, et al. Mechanical and dielectric properties of carbon/boron nitride composites reinforced by three-dimensional needled carbon felt[J]. Acta Materiae Compositae Sinica,2010,27(4):15-20(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.04.027
    [10]
    陈国耀, 黄丰, 杨振宇, 等. 三维针刺复合材料参数化建模及力学性能仿真[J]. 复合材料学报, 2022, 39(9):4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002

    CHEN Guoyao, HUANG Feng, YANG Zhenyu, et al. Parametric modeling and mechanical properties simulation of three-dimensional needled composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4459-4470(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220725.002
    [11]
    LU L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal,2021,91(3-4):358-372. doi: 10.1177/0040517520944477
    [12]
    ZHAO W, YU R, DONG W, et al. The influence of long carbon fiber and its orientation on the properties of three-dimensional needle-punched CF/PEEK composites[J]. Composites Science and Technology,2021,203:108565. doi: 10.1016/j.compscitech.2020.108565
    [13]
    DONG Y, SHI X, ZHANG Z, et al. In-situ bending behavior and failure characterization of 3D needle-punched C/SiC composites[J]. Materials Today Communications,2017,13:378-385. doi: 10.1016/j.mtcomm.2017.11.002
    [14]
    XIE J, CHEN X, ZHANG Y. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology,2018,165:115-123. doi: 10.1016/j.compscitech.2018.06.009
    [15]
    JIN X C, HOU C, LI C L, et al. Strain rate effect on mechanical properties of 3D needle-punched C/C composites at different temperatures[J]. Composites Part B: Engineering,2019,160:140-146. doi: 10.1016/j.compositesb.2018.10.044
    [16]
    JIA Y Z, LIAO D M, CUI H, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials & Design,2016,104:19-26.
    [17]
    SONG L, LI J, ZHAO Y, et al. Effect of prefabricated structure on thermal conductivity of acupuncture quartz fiber/epoxy composites[J]. Journal of Composites,2016,5:955-961.
    [18]
    ZHENG J, LI H, CUI H, et al. Study on the correlation between the tensile strength of C/C composites and the parameters of needle punching[J]. Journal of Inorganic Materials,2017,11:30-36.
    [19]
    吴小军, 杨杰, 郑蕊, 等. 烧蚀型面结构对CVI+HPIC工艺制备针刺C/C喉衬等离子烧蚀性能的影响[J]. 无机材料学报, 2020, 35(6):654-660.

    WU Xiaojun, YANG Jie, ZHENG Rui, et al. Effect of ablative surface structure on plasma ablative properties of needled C/C throat lining prepared by CVI+HPIC process[J]. Journal of Inorganic Materials,2020,35(6):654-660(in Chinese).
    [20]
    YAO T, CHEN X, LI J, et al. Significantly improve the interlayer and in-plane properties of needled fabrics by novel none-felt needling technology[J]. Composite Structures,2021,274:114303. doi: 10.1016/j.compstruct.2021.114303
    [21]
    YAO T, CHEN X, LI J, et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures,2022,290:115507. doi: 10.1016/j.compstruct.2022.115507
    [22]
    XUE L, CHEN Z, LIAO J, et al. Compressive strength and damage mechanisms of 3D needle-punched Cf/SiC-Al composites[J]. Journal of Alloys and Compounds,2021,853:156934. doi: 10.1016/j.jallcom.2020.156934
    [23]
    CHEN X M, ZHENG H W, WEI Y Y, et al. Effect of tufting on the interlaminar bonding behavior of needled composite[J]. Polymer Composites, 2022, 44(1): 229-240.
    [24]
    CHEN X, ZHAO Y, ZHANG C. Robot needle-punching for manufacturing composite preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 132-139.
    [25]
    CHEN X, ZHANG Y, XIE J. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34.
    [26]
    American Society for Testing and Materials. Standard test method for in-plane shear strength of reinforced plastics: ASTM D3846-08(2015)[S]. West Conshohocken: ASTM International, 2015.
    [27]
    ALMANSOUR F A, DHAKAL H N, ZHANG Z Y, et al. Effect of hybridization on the mode II fracture toughness properties of flax/vinyl ester composites[J]. Polymer Composites, 2017, 38(8): 1732-1740.
    [28]
    TAPULLIMA J, SONG S H, KWEON J H, et al. Characterization of mode II specimen using I-fiber stitching process[J]. Composite Structures, 2021, 255: 112863.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (330) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return