留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃纤维-不锈钢网混杂增强环氧树脂层合板对球形弹斜冲击响应特性实验研究

邓云飞 蔡雄峰 李想 张伟岐 魏刚

邓云飞, 蔡雄峰, 李想, 等. 玻璃纤维-不锈钢网混杂增强环氧树脂层合板对球形弹斜冲击响应特性实验研究[J]. 复合材料学报, 2021, 38(9): 2869-2881. doi: 10.13801/j.cnki.fhclxb.20210406.001
引用本文: 邓云飞, 蔡雄峰, 李想, 等. 玻璃纤维-不锈钢网混杂增强环氧树脂层合板对球形弹斜冲击响应特性实验研究[J]. 复合材料学报, 2021, 38(9): 2869-2881. doi: 10.13801/j.cnki.fhclxb.20210406.001
DENG Yunfei, CAI Xiongfeng, LI Xiang, et al. Experimental study on oblique impact of steel balls on glass fiber-stainless steel mesh hybrid reinforced epoxy laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2869-2881. doi: 10.13801/j.cnki.fhclxb.20210406.001
Citation: DENG Yunfei, CAI Xiongfeng, LI Xiang, et al. Experimental study on oblique impact of steel balls on glass fiber-stainless steel mesh hybrid reinforced epoxy laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2869-2881. doi: 10.13801/j.cnki.fhclxb.20210406.001

玻璃纤维-不锈钢网混杂增强环氧树脂层合板对球形弹斜冲击响应特性实验研究

doi: 10.13801/j.cnki.fhclxb.20210406.001
基金项目: 国家自然科学基金(11702317);中央高校基本科研业务费资助(3122019077)
详细信息
    通讯作者:

    邓云飞,博士,副教授,硕士生导师,研究方向为复合材料结构设计与性能评价 E-mail:yfdeng@cauc.edu.cn

  • 中图分类号: TB332; O385

Experimental study on oblique impact of steel balls on glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

  • 摘要: 为了研究玻璃纤维-不锈钢网混杂增强环氧树脂层合板在球形弹高速斜冲击下的损伤特性,利用一级气炮对2 mm厚度的玻璃纤维增强环氧树脂复合材料层合板和含一层、三层304不锈钢网的玻璃纤维-不锈钢网混杂增强环氧树脂层合板进行倾角为30°的冲击实验,以揭示304不锈钢网对层合板弹道极限和能量吸收的影响规律,并分析层合板损伤特征及其机理。通过实验发现,含有三层不锈钢网层合板的弹道极限最高,而不含不锈钢网层合板和含一层不锈钢网层合板的弹道极限速度接近。层合板吸收的能量随着弹体速度增加呈现出先增加后趋于平稳,然后急剧上升的趋势。层合板损伤模式为基体开裂和破碎、分层、不锈钢丝拉伸断裂、纤维拉伸断裂和剪切断裂。层合板分层损伤面积随弹体速度增大先增大后减小,最后趋于稳定。当弹体速度较低时,层合板主要发生纤维拉伸断裂、基体开裂、层间有分层损伤产生。随着弹体速度的增大,层合板正面纤维逐渐发生压剪断裂、基体破碎,背面纤维发生严重的拉伸撕裂。

     

  • 图  1  玻璃纤维-不锈钢网混杂增强环氧树脂层合板试件照片

    Figure  1.  Photographs of test samples of glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

    图  2  一级气炮装置示意

    Figure  2.  One-stage gas gun experimental system

    图  3  高速摄像机系统距离标定示意

    Figure  3.  Sketch of demarcate distance for high speed camera

    图  4  靶板固定方式

    Figure  4.  Fixing method of plate

    图  5  弹体的初始与剩余速度曲线

    Figure  5.  Initial vs. residual velocities for projectiles

    图  6  弹体冲击层合板的过程

    Figure  6.  Impact process of laminates against projectiles

    图  7  不含钢网层合板在弹体冲击后的损伤形式

    Figure  7.  Failure modes of laminated plates without steel mesh against projectiles

    图  8  不含钢网层合板在弹体冲击下的损伤投影

    Figure  8.  Damage projection of laminated plates without steel mesh impacted by projectiles

    图  9  不含钢网层合板在弹体冲击下的横截面

    Figure  9.  Cross section of laminated plates without steel mesh impacted by projectiles

    图  10  含一层钢网层合板在弹体冲击下的损伤形貌

    Figure  10.  Failure modes of laminated plates with one layer of steel mesh against projectiles

    图  11  含一层钢网层合板在弹体冲击下的损伤投影

    Figure  11.  Damage projection of laminated plates with one layer of steel mesh impacted by projectiles

    图  12  含一层钢网层合板在弹体冲击下的横截面

    Figure  12.  Cross section of laminated plates with one layer of steel mesh impacted by projectiles at different velocities

    图  13  含三层钢网层合板在弹体冲击下的损伤形貌

    Figure  13.  Damage modes of laminated plates with three layers of steel mesh against projectiles

    图  14  含三层钢网层合板在弹体冲击下的损伤投影

    Figure  14.  Damage projection of laminated plates with three layers of steel mesh impacted by projectiles

    图  15  含三层钢网层合板在弹体冲击下的横截面

    Figure  15.  Cross section of laminated plates with three layers of steel mesh impacted by projectile

    图  16  不锈钢网与基体界面 (vi=119.8 m/s)

    Figure  16.  Interface between stainless steel mesh and matrix (vi=119.8 m/s)

    图  17  三种玻璃纤维-不锈钢网混杂增强环氧树脂层合板在弹体相近速度冲击下的横断面

    Figure  17.  Cross section of three kinds of glass fiber-stainless steel mesh hybrid reinforced epoxy laminated plates under the impact of projectile at similar velocities

    图  18  三种玻璃纤维-不锈钢网混杂增强环氧树脂层合板在相近速度下的纤维微观结构

    Figure  18.  Fiber microstructures of three kinds of glass fiber-stainless steel mesh hybrid reinforced epoxy laminated plates under the impact of projectile at similar velocities

    图  19  玻璃纤维-不锈钢网混杂增强环氧树脂层合板损伤面积与弹体速度关系

    Figure  19.  Damage area vs. velocity of glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

    图  20  玻璃纤维-不锈钢网混杂增强环氧树脂层合板吸收能量与弹体速度关系

    Figure  20.  Energy absorption of glass fiber-stainless steel mesh hybrid reinforced epoxy laminates vs. velocity of projectile

    表  1  三种玻璃纤维-不锈钢网混杂增强环氧树脂层合板铺层顺序

    Table  1.   Stacking sequence of three kinds of glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

    GroupStacking
    sequence
    Thickness/
    mm
    Mass/
    g
    FFFF [0/90]2s 2 52.1
    FFSFF [(0/90)2(304ss)(90/0)2] 2 55.4
    FSFSFSF [(0/90)(304ss)(0/90)(304ss)
    (90/0)(304ss)(90/0)]
    2 63.2
    Notes: F—Glass fiber; S—304 stainless steel.
    下载: 导出CSV

    表  2  三种玻璃纤维-不锈钢网混杂增强环氧树脂层合板准静态力学性能测试结果

    Table  2.   Test results of quasi-static mechanical properties of three kinds of glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

    GroupTensile modulus/GPaTensile strength/MPaCompressive modulus/GPaCompressive strength/MPaFlexural modulus/GPaFlexural strength/MPa
    FFFF 21.10 361.86 36.54 335.70 16.51 439.00
    FFSFF 23.60 388.15 39.00 328.29 19.41 450.00
    FSFSFSF 24.45 392.07 45.66 326.62 19.97 482.00
    下载: 导出CSV

    表  3  三种玻璃纤维-不锈钢网混杂增强环氧树脂层合板冲击实验结果

    Table  3.   Impact test results of three kinds of glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

    FFFFFFSFFFSFSFSF
    vi/(m·s−1)vr/(m·s−1)vi/(m·s−1)vr/(m·s−1)vi/(m·s−1)vr/(m·s−1)
    92.8 0.0 79.1 0.0 110.8 0.0
    107.1 0.0 111.6 32.7 119.8 37.1
    125.6 65.4 121.1 57.7 135.3 89.4
    141.9 99.2 156.0 110.5 153.9 105.0
    197.6 170.0 183.5 149.1 207.4 177.7
    242.1 220.4 217.2 189.7 240.1 214.2
    263.8 241.6 225.0 201.1 253.9 228.9
    336.6 314.5 243.0 219.6 297.7 274.5
    443.6 417.4 453.6 426.8 449.0 419.4
    Notes: vi—Initial velocity; vr—Residual velocity.
    下载: 导出CSV

    表  4  弹体对层合板的弹道极限和模型参数

    Table  4.   Ballistic limits and mode parameters of projectiles

    ParameterFFFFFFSFFFSFSFSF
    a111
    p2.1521.95
    vbl/(m·s−1)106105112
    Notes: a, p—Fitting parameters; vbl—Ballistic limit velocity.
    下载: 导出CSV
  • [1] VARAS D, ARTERO-GUERRERO J A, PERNAS-SANCHEZ J, et al. Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates[J]. Composite Structures,2013,95:623-629. doi: 10.1016/j.compstruct.2012.08.015
    [2] TANG Z, HANG C, SUO T, et al. Numerical and experimental investigation on high impact on composite panels[J]. International Journal of Impact Engineering,2017,105:102-108. doi: 10.1016/j.ijimpeng.2016.05.016
    [3] PERNAS-SANCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates[J]. Composites Part A: Applied Science and Manufacturing,2014,60:24-31. doi: 10.1016/j.compositesa.2014.01.006
    [4] ALIREZA T F, GHOLAMHOSSEIN L, HAMED A, et al. Experimental and numerical investigation of the impact response of elastomer layered fiber metal laminates (EFMLs)[J]. Composite Structures,2020,245:112264. doi: 10.1016/j.compstruct.2020.112264
    [5] KHORAMISHAD H, ALIKHANI H, DARIUSHIB S. An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates[J]. Composite Structures,2018,201:561-569. doi: 10.1016/j.compstruct.2018.06.085
    [6] LEE D W, PARK B J, PARK S Y. Fabrication of high-stiffness fiber-metal laminates and study of theirbehavior under low-velocity impact load-ings[J]. Composite Structures,2018,189:61-69. doi: 10.1016/j.compstruct.2018.01.044
    [7] CARRILLOA J G, GONZALEZ-CANCHEA N G, FLORES-JOHNSONB E A, et al. Low velocity impact response of fibre metal laminates based on aramid fibre reinforced polypropylene[J]. Composite Structures,2019,220:708-716. doi: 10.1016/j.compstruct.2019.04.018
    [8] 陈战辉, 万小朋, 王文智, 等. 层间混杂层合板弹道冲击损伤对比研究[J]. 航空工程进展, 2018, 9(4):599-602.

    CHEN Zhanhui, WAN Xiaopeng, WANG Wenzhi, et al. An experimental investigation on the damaged behavior of hybrid composite laminates under ballistic impact[J]. Advances in Aeronautical Science and Engineering,2018,9(4):599-602(in Chinese).
    [9] 鲍子贺, 牛一凡, 严炎, 等. 混杂纤维复合材料力学性能及其低速冲击性能研究[J]. 塑料工业, 2018, 46(8):80-84. doi: 10.3969/j.issn.1005-5770.2018.08.019

    BAO Zihe, NIU Yifan, YAN Yan, et al. Investigation on the mechanical and low velocity impact properties of hybrid composite materials[J]. China Plastics Industry,2018,46(8):80-84(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.08.019
    [10] 周霞, 李凯, 陈成杭, 等. 纤维/镁合金混杂层合板低速冲击响应及损伤模拟[J]. 振动与冲击, 2018, 37(2):1-9.

    ZHOU Xia, LI Kai, CHEN Chenghang, et al. Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates[J]. Journal of Vibration and Shock,2018,37(2):1-9(in Chinese).
    [11] AL-HAJAJ Z, SY B L, BOUGHERARA H, et al. Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix[J]. Composite Structures,2019,208:346-356. doi: 10.1016/j.compstruct.2018.10.033
    [12] 易凯, 孙建波, 杨智勇, 等. 混杂纤维复合材料层板的抗弹冲击性能[J]. 宇航材料工艺, 2019, 1:82-85. doi: 10.12044/j.issn.1007-2330.2019.02.016

    YI Kai, SUN Jianbo, YANG Zhiyong, et al. Ballistic impact resistance of hybrid composite materials[J]. Aerospace Materials & Technology,2019,1:82-85(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.02.016
    [13] 苏波, 张抟, 于国军, 等. 平纹织物混杂纤维复合材料低速冲击性能试验研究[J]. 玻璃钢/复合材料, 2019, 11:58-63.

    SU Bo, ZHANG Tuan, YU Guojun, et al. Experimental study on low speed impact properties of plain fabric hybrid fiber-reinforced plastics[J]. Fiber Reinforced Plastics/Composites,2019,11:58-63(in Chinese).
    [14] PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2020,232:111571.
    [15] Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M—14[S]. ASTM International. 2014, 1-13.
    [16] Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264/D7264M—15[S]. ASTM International. 2015.
    [17] ASTM International. Standard text method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M—14[S]. West Conshohocken: ASTM International, 2014.
    [18] KHODADADI A, LIAGHAT G, REZA BAHRAMIAN A, et al. High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: A comparative study[J]. Composite Structures,2019,216:159-167. doi: 10.1016/j.compstruct.2019.02.080
    [19] RECHT R F, IPSON T W. Ballistic perforation dynamics[J]. Journal of Applied Mechanics,1963,30(3):384-391. doi: 10.1115/1.3636566
    [20] 叶辉, 朱艳荣, 蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5):1622-1629.

    YE Hui, ZHU Yanrong, PU Yongfeng. Numerical simulation of strain rate effect of fiber-reinforced composites[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(5):1622-1629(in Chinese).
    [21] SREEKANTHA REDDY T, MOGULANNA K, GOPINADHA REDDY K, et al. Effect of thickness on behaviour of E-glass/epoxy composite laminates under low velocity impact[J]. Procedia Structural Integrity,2016,14:265-272.
    [22] 吴盼, 阎建华, 俞建勇, 等. 碳纤/环氧复合材料层合板低速冲击损伤机理研究[J]. 玻璃钢/复合材料, 2016(3):31-37.

    WU Pan, YAN Jianhua, YU Jianyong, et al. Low-velocity impact damage mechanism of carbon/epoxy composite laminates[J]. Fiber Reinforced Plastics/Composites,2016(3):31-37(in Chinese).
    [23] KHODADADI A, LIAGHAT G, AHMADI H, et al. Impact response of Kevlar/rubber composite[J]. Composites Science and Technology,2019,184:107880. doi: 10.1016/j.compscitech.2019.107880
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  301
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2021-03-10
  • 录用日期:  2021-03-15
  • 网络出版日期:  2021-04-06
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回