留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆弧形单向纤维增强树脂复合材料的I型层间断裂韧性测试及分析

康永胜 张小章 王黎明 李武胜

康永胜, 张小章, 王黎明, 等. 圆弧形单向纤维增强树脂复合材料的I型层间断裂韧性测试及分析[J]. 复合材料学报, 2021, 38(9): 2904-2913. doi: 10.13801/j.cnki.fhclxb.20210312.004
引用本文: 康永胜, 张小章, 王黎明, 等. 圆弧形单向纤维增强树脂复合材料的I型层间断裂韧性测试及分析[J]. 复合材料学报, 2021, 38(9): 2904-2913. doi: 10.13801/j.cnki.fhclxb.20210312.004
KANG Yongsheng, ZHANG Xiaozhang, WANG Liming, et al. Test and analysis of the mode I delamination toughness of arc unidirectional fiber-reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2904-2913. doi: 10.13801/j.cnki.fhclxb.20210312.004
Citation: KANG Yongsheng, ZHANG Xiaozhang, WANG Liming, et al. Test and analysis of the mode I delamination toughness of arc unidirectional fiber-reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2904-2913. doi: 10.13801/j.cnki.fhclxb.20210312.004

圆弧形单向纤维增强树脂复合材料的I型层间断裂韧性测试及分析

doi: 10.13801/j.cnki.fhclxb.20210312.004
详细信息
    通讯作者:

    张小章,教授,博士生导师,研究方向为高速旋转机械与转子动力学  E-mail:zhangxzh@mail.tsinghua.edu.cn

  • 中图分类号: TB332

Test and analysis of the mode I delamination toughness of arc unidirectional fiber-reinforced resin composites

  • 摘要: 层合板的I型层间断裂韧性的测量方法通常为单向纤维增强树脂复合材料的末端切口(End notched flexure, ENF)试样的双悬臂梁(Double cantilever beam, DCB)试验。为了得到带有弧度的层合复合材料结构的I型层间断裂韧性,对圆弧形末端切口(Arc-ENF)试样进行DCB试验。基于梁的弯曲理论和Irwin-Kies公式得到Arc-ENF试样的柔度公式与I型临界能量释放率GIC公式,并且利用ABAQUS软件对DCB试验进行数值模拟。最终,通过对比分析理论公式计算结果、数值模拟结果和DCB试验结果来验证柔度公式和GIC公式的合理性和有效性,对带有任意弧度的DCB试样的I型层间断裂韧性的测试与分析具有参考价值。

     

  • 图  1  曲梁的弯曲变形图

    Figure  1.  Bending deformation of the curved beam

    图  2  曲梁的受力分析图

    Figure  2.  Forces analysis of the curved beam

    图  3  圆心角为90°的曲梁弯曲变形曲线

    Figure  3.  Deformation curves of the curved beam with circumference angle 90°

    图  4  圆心角为45°的曲梁弯曲变形图曲线

    Figure  4.  Deformation curves of the curved beam with circumference angle 45°

    图  5  曲梁的端部载荷与端部位移关系曲线

    Figure  5.  Load-displacement curve on the end of the curved beam

    图  6  曲梁的柔度曲线

    Figure  6.  Compliance curve of the curved beam

    图  7  双悬臂梁(DCB)试验模型图

    Figure  7.  Model of the double cantilever beam (DCB) test

    图  8  DCB试验实物图

    Figure  8.  Picture of the DCB test

    图  9  Arc-ENF试样的有限元模型

    Figure  9.  Finite element model of the Arc-ENF specimen

    图  10  Arc-ENF试样的载荷-位移曲线结果对比

    Figure  10.  Comparison of load-displacement curves for the Arc-ENF specimen

    图  11  Arc-ENF试样的柔度曲线结果对比

    Figure  11.  Comparison of compliance curves for the Arc-ENF specimen

    图  12  Arc-ENF试样的R曲线结果对比

    Figure  12.  Comparison of R-curves for the Arc-ENF specimen

    图  A1  曲梁的弯曲变形图

    Figure  A1.  Deformation of the curved beam

    表  1  圆弧形末端切口(Arc-ENF)试样的几何参数

    Table  1.   Geometry parameters of the Arc-end notched flexure (Arc-ENF) specimens

    Width
    b/mm
    Thickness
    h/mm
    Inside radius
    R0/mm
    Central
    angle α
    Initial crack
    length/mm
    Central angle of the
    initial crack length θ0
    Length of the
    hinge Lh/mm
    25 2 71 90° 30 23.87° 25
    下载: 导出CSV

    表  2  Arc-ENF试样的力学性能参数

    Table  2.   Mechanical properties of the Arc-ENF specimens

    Longitudinal modulus
    E11/GPa
    Transverse modulus
    E22, E33/GPa
    Poisson ratio
    ν12, ν13, ν23
    Shear modulus
    in plane G12, G13/GPa
    Transverse shear
    modulus G23/GPa
    16080.353.08
    下载: 导出CSV

    表  3  Arc-ENF试样层间模型参数

    Table  3.   Parameters of the interlamination of the Arc-ENF specimen

    Width of the interlamination/mmModulus E/GPaPoisson ratio νTensile strength $\sigma _{{\rm{u,t}}}^{\rm{m}}$/MPaCompressive strength $\sigma _{{\rm{u,c}}}^{\rm{m}}$/MPaShear strength $\sigma _{{\rm{u,s}}}^{\rm{m}}$/MPaCorrection factor Kh
    0.0130.380105513.27
    下载: 导出CSV
  • [1] 马存旺, 吴伟伟, 鲁国富, 等. 整体复合材料结构分层特性研究进展(三)[J]. 飞机设计, 2015, 35(1):13-24.

    MA Cunwang, WU Weiwei, LU Guofu, et al. Development on delamination characteristics of integrated composite structures: Part III[J]. Aircraft Design,2015,35(1):13-24(in Chinese).
    [2] 碳纤维复合材料层合板I型层间断裂韧性GIC试验方法: HB 7402—96[S]. 北京: 中国航空工业总公司, 1996.

    Test of the Mode I interlaminar fracture toughness of carbon-fiber composite laminates: HB 7402—96[S]. Beijing: Aviation Industry Corporation of China, 1996(in Chinese).
    [3] ASTM International: Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—13[S]. US: West Conshohocken, 2013.
    [4] MOSTOVOY S, CROSLEY P, RIPLING E J. Use of crack-line loaded specimens for measuring plane-strain fracture toughness[J]. Journal of Materials,1967,2(3):661-681.
    [5] ŠKEC L, ALFANO G, JELENIC G. Enhanced simple beam theory for characterising mode-I fracture resistance via a double cantilever beam test[J]. Composites Part B: Engineering,2019,167:250-262. doi: 10.1016/j.compositesb.2018.11.099
    [6] WILLIAMS J G. End corrections for orthotropic DCB specimens[J]. Composites Science and Technology,1989,35:367-376. doi: 10.1016/0266-3538(89)90058-4
    [7] BERRY J P. Some kinetic considerations of the Griffith criterion of fracture-I: Eqns of motion at constant deformation[J]. Journal of the Mechanics & Physics of Solids,1960,8:216-270.
    [8] 马存旺, 李志国, 鲁国富, 等. 整体复合材料结构分层特性研究进展(二)[J]. 飞机设计, 2014(6):32-41.

    MA Cunwang, LI Zhiguo, LU Guofu, et al. Development on delamination characteristics of integrated composite structures: Part II[J]. Aircraft Design,2014(6):32-41(in Chinese).
    [9] ALA T, ZHANG W L. Composite laminate delamination simulation and experiment: A review of recent development[J]. Applied Mechanics Reviews,2018,70(3):030801. doi: 10.1115/1.4040448
    [10] RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics,1977,9(4):931-938. doi: 10.1016/0013-7944(77)90013-3
    [11] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of Mechanics Physics Solids,1960,8(2):100-104. doi: 10.1016/0022-5096(60)90013-2
    [12] BARENBLATT G I. The mathematical theory of equilibrium of cracks in brittle fracture[J]. Advances in Applied Mechanics,1962(7):55-129.
    [13] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials,1998,32(14):1246-1272. doi: 10.1177/002199839803201401
    [14] TVERGAARD V, HUTCHINSON J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics & Physics of Solids,1992,40(6):1377-1397.
    [15] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics,1987,54(3):525. doi: 10.1115/1.3173064
    [16] XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling & Simulation in Materials ence & Engineering,1999,1(2):111.
    [17] ALFANO M, FURGIUELE F, LEONARDI A, et al. Mode I fracture of adhesive joints using tailored cohesive zone models[J]. International Journal of Fracture,2008,157(1):193-204.
    [18] LI S, THOULESS M D, WAAS A M, et al. Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer–matrix composite[J]. Composites Science & Technology,2005,65(3-4):537-549.
    [19] LI S, THOULESS M D, WAAS A M, et al. Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite[J]. Engineering Fracture Mechanics,2006,73(1):64-78. doi: 10.1016/j.engfracmech.2005.07.004
    [20] LI S, THOULESS M D, WAAS A M, et al. Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite[J]. Composites Science & Technology,2005,65(2):281-293.
    [21] DEMORAIS A B, PEREIRA A B. Application of the effective crack method to mode I and mode II interlaminar fracture of carbon/epoxy unidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing,2007,38(3):785-794. doi: 10.1016/j.compositesa.2006.09.001
    [22] DAVILA C G, ROSE C A, CAMANHO P P. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites[J]. International Journal of Fracture,2009,158(2):211-223. doi: 10.1007/s10704-009-9366-z
    [23] HUANG Z M, LI P. Prediction of laminate delamination with no iteration[J]. Engineering Fracture Mechanics,2020,238:107248. doi: 10.1016/j.engfracmech.2020.107248
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  766
  • HTML全文浏览量:  415
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2021-03-01
  • 录用日期:  2021-03-04
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回