留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强聚合物基复合材料熔融堆积成型技术的研究进展及产品的力学性能

胡艺伟 李亚智 李彪 申思雨

胡艺伟, 李亚智, 李彪, 等. 纤维增强聚合物基复合材料熔融堆积成型技术的研究进展及产品的力学性能[J]. 复合材料学报, 2021, 38(4): 979-996. doi: 10.13801/j.cnki.fhclxb.20210118.003
引用本文: 胡艺伟, 李亚智, 李彪, 等. 纤维增强聚合物基复合材料熔融堆积成型技术的研究进展及产品的力学性能[J]. 复合材料学报, 2021, 38(4): 979-996. doi: 10.13801/j.cnki.fhclxb.20210118.003
HU Yiwei, LI Yazhi, LI Biao, et al. 3D printed fibre-reinforced polymer composites—Review of the fused deposition modeling process and mechanical performance of products[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 979-996. doi: 10.13801/j.cnki.fhclxb.20210118.003
Citation: HU Yiwei, LI Yazhi, LI Biao, et al. 3D printed fibre-reinforced polymer composites—Review of the fused deposition modeling process and mechanical performance of products[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 979-996. doi: 10.13801/j.cnki.fhclxb.20210118.003

纤维增强聚合物基复合材料熔融堆积成型技术的研究进展及产品的力学性能

doi: 10.13801/j.cnki.fhclxb.20210118.003
详细信息
    通讯作者:

    李亚智,博士,教授,博士生导师,研究方向为飞行器结构设计和综合设计  E-mail:yazhi.li@nwpu.edu.cn

  • 中图分类号: V214.8;V258;TB332

3D printed fibre-reinforced polymer composites—Review of the fused deposition modeling process and mechanical performance of products

  • 摘要: 增材制造(Additive manufacturing,AM)技术,又称3D打印技术,是一种新兴的顺序叠层制造工艺。近几年来,大量关于引入连续碳纤维增强相以改善打印结构力学性能的研究为打印高性能聚合物基复合材料开辟了新的途径。本文首先简要介绍聚合物材料增材制造工艺发展史,阐述技术革新和材料革新(引入增强相)对打印聚合物基材料产品性能优化的积极作用。随后着重描述了熔融堆积成型(Fused deposition modelling,FDM)技术制造连续纤维增强聚合物复合材料的工艺原理,并介绍了打印连续纤维增强聚合物基复合材料的力学性能优势及存在的问题。最后,从材料、工艺参数及复合材料细观/微观结构等方面分析了影响打印纤维增强聚合物基复合材料力学性能的主要因素,为读者了解分析FDM技术的优势和存在的问题提供参考。

     

  • 图  1  聚合物基材料增材制造工艺原理示意图[2,13-14]

    Figure  1.  Schemes of the fabrication processes for polymer based composite materials[2-13-14]

    图  2  Mark Two®打印机可选择的两种纤维排列方式(蓝色为纤维,灰色为填充的基体)[28]

    Figure  2.  Illustrations of two fibre-infill patterns used in Mark Two® (Blue lines represent fibre while greys are infilled matrix)[28]

    图  3  混合法则(ROM)预测的碳纤维/尼龙6 (CF/PA6)性能值和文献中FDM复合材料性能数据对比[18-23,29,31,44-54]

    Figure  3.  Comparison of the property values between theoretical prediction of the traditional fabricated carbon/Nylon 6 (CF/PA6) using the rule of mixtures (ROM) and FDM manufactured composites[18-23,29,31,44-54]

    ABS—Acrylonitrile-butadiene-styrene; PLA—Polylactic acid; PEI—Polyetherimide; PPS—Polyphenylene sulfite; SWNT—Single-walled carbon nanotubes; VGCF—Vapor grown carbon Fiber; CNT—Carbon nanotube; sCF—Short carbon fiber; cCF—Continuous carbon fiber

    图  4  打印连续纤维增强聚合物基复合材料(FRPC)单向板破坏模式[20]

    Figure  4.  Fracture modes of printed unidirectional continuous fibre-reinforced polymer composites (FRPC) laminates[20]

    图  5  打印连续纤维增强聚合物基复合材料单向板弯曲失效模式照片[20]

    Figure  5.  Photos of the flexural modes of printed unidirectional continuous FRPC[20]

    图  6  打印碳纤维增强树脂基复合材料(CFRP)含孔层合板图示[40]

    Figure  6.  Illustration of printed carbon fiber reinforced plastic (CFRP) specimens with open hole[40]

    图  7  冲孔件(上)和打印编织件(下)双剪失效区域[46]

    Figure  7.  Double shear failure regions for ‘Drilled’ (top) and ‘Tailor Woven’ (bottom) specimens[46]

    图  8  打印夹芯结构的四种夹层形状及夹层单元图示[42]

    Figure  8.  Schematic diagrams of 3D printing of sandwich structures and unit cells of four types of core[42]

    图  9  自悬挂3D打印CF/PLA金字塔晶格结构照片[41]

    Figure  9.  Photo of free-hanging 3D printed CF/PLA pyramidal lattice structure[41]

    图  10  不同的FDM连续纤维预浸渍/原位浸渍方法[59]

    Figure  10.  Different pre-impregnation/in-suit impregnation systems for FDM continuous fibre filament[59]

    图  11  玻璃纤维(GF)和CF横截面纤维不同放大倍数下的显微图像[25]

    Figure  11.  Cross-sectional optical images of glass fiber (GF) and CF under different magnifications[25]

    图  12  使用纤维原位浸渍方法及不同喷嘴温度制备的CF/PLA复合材料断面照片[65]

    Figure  12.  Fractured surfaces of CF/PLA composites using fibre in-situ fusion process with different nozzle temperatures[65]

    图  13  使用MarkTwo®打印机制备的具有不同纤维和树脂填充结构的试件横截面示意图[38]

    Figure  13.  Cross-section of the specimens for different configurations of fibre and resin with the MarkTwo® printer[38]

    图  14  使用激光辅助设备前(上)后(下)聚合物扩散形成界面结合的图示[66]

    Figure  14.  Diagram of polymer distribution interfacial bonding during extrusion without (up) and with (down) laser assistance[66]

    图  15  打印连续CF/尼龙细观结构SEM图像[20,25]

    Figure  15.  SEM images of mesostructure of printed continuous CF/Nylon[20,25]

    图  16  光学显微镜下小曲率弯折处观察到的CF折断[20]

    Figure  16.  Breaking of CF at small turning radius under optical microscope[20]

    表  1  图3引用的文献中对用于FDM工艺的不同增强材料的拉伸性能研究

    Table  1.   Tensile studies conducted on different reinforced filament fabrication using FDM referred in Fig. 3

    MaterialMass fraction
    of reinforcement/
    wt%
    Volume fraction
    of reinforcement/
    vol%
    Tensile propertyReference
    Strength/
    MPa
    Young’s
    Modulus/GPa
    Short fibre/particle-reinforced CF/ABS 10 52 7.7 [26]
    20 60 11.5
    30 62 13.8
    40 67 13.7
    3 41 2.1 [29]
    5 42 2.4
    7.5 42 2.5
    10 34 2.2
    15 35 2.2
    13 71 8.9 [33]
    13 53 8.2 [27]
    20 66 11.9 [47]
    20 67 8.4 [48]
    GF/ABS 20 54.3 5.7 [47]
    40 51.2 10.8
    CF/PLA 15 53 7.5 [46]
    CF/PEI 29 61 8.4 [47]
    CF/PPS 29 92 26.4
    SWNT/ABS 5 32 1.7 [52]
    VGCF/ABS 5 27 1.3
    10 37 0.8
    CNT/PEI 4.7 125 3.0
    Continuous fibre-reinforced CF/Nylon 6 140 14.0 [54]
    18 464 35.7
    11 198 8.5 [31]
    20 701 68.1 [32]
    20 968 62.5 [34]
    24 600 13.0 [33]
    AF/Nylon 8 110 4.2 [31]
    10 161 4.8
    GF/Nylon 8 156 3.3
    10 212 4.9
    CF/ABS 10 147 4.2 [40]
    CF/PLA 6.6 195 10.5 [40]
    6.6 185 19.5 [49]
    10 256 20.6 [51]
    Note: AF—Aramid fiber.
    下载: 导出CSV
  • [1] QUAN Z, WU A, KEEFE M, et al. Additive manufacturing of multi-directional preforms for composites: Opportunities and challenges[J]. Materials Today,2015,18(9):503-512. doi: 10.1016/j.mattod.2015.05.001
    [2] CALIGNANO F, MANFREDI D, AMBROSIO E P, et al. Overview on additive manufacturing technologies[J]. Proceedings of the IEEE,2017,105(4):593-612. doi: 10.1109/JPROC.2016.2625098
    [3] HELLER C, SCHWENTENWEIN M, RUSSMUELLER G, et al. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2009,47(24):6941-6954. doi: 10.1002/pola.23734
    [4] BEAMAN J J. Solid freeform fabrication: A new direction in manufacturing: with research and applications in thermal laser processing[M]. New York, USA: Springer, 2013.
    [5] HINCZEWSKI C, CORBEL S, CHARTIER T. Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society,1998,18(6):583-590. doi: 10.1016/S0955-2219(97)00186-6
    [6] MELCHELS F P W, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials,2010,31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
    [7] CHEAH C M, FUH J Y H, NEE A Y C, et al. Mechanical characteristics of fiber-filled photo-polymer used in stereolithography[J]. Rapid Prototyping Journal,1999,5(3):112-119. doi: 10.1108/13552549910278937
    [8] KARALEKAS E. Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping[J]. Materials & Design,2003,24(8):665-670.
    [9] MUELLER J, COURTY D, SPIELHOFER M, et al. Mechanical properties of interfaces in Inkjet 3D printed single- and multi-material parts[J]. 3D Printing and Additive Manufacturing,2017,4(4):193-199. doi: 10.1089/3dp.2017.0038
    [10] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials,2014,26(34):5930-5935. doi: 10.1002/adma.201401804
    [11] ZIAEE M, CRANE N B. Binder jetting: A review of process, materials, and methods[J]. Additive Manufacturing,2019,28:781-801. doi: 10.1016/j.addma.2019.05.031
    [12] WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034
    [13] DIZON J R C, ESPERA A H, CHEN Q, et al. Mechanical characterization of 3D-printed polymers[J]. Additive Manufacturing,2018,20:44-67. doi: 10.1016/j.addma.2017.12.002
    [14] ASTM. Standard terminolgy for additive manufacturing technologies: F2792-12a A[J]. ASTM International, West Conshohocken, 2015.
    [15] KLOSTERMAN D, CHARTOFF R, GRAVES G, et al. Interfacial characteristics of composites fabricated by laminated object manufacturing[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9):1165-1174.
    [16] SOOD A K, OHDAR R K, MAHAPATRA S S. Parametric appraisal of mechanical property of fused deposition modelling processed parts[J]. Materials & Design,2010,31(1):287-295.
    [17] WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing[J]. Progress in Materials Science,2020,111:100638.
    [18] TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology,2014,105:144-150. doi: 10.1016/j.compscitech.2014.10.009
    [19] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing,2018,21:1-16. doi: 10.1016/j.addma.2018.01.002
    [20] GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design,2018,137:79-89.
    [21] JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. doi: 10.1016/j.compstruct.2017.11.052
    [22] KLIFT F V D, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials,2016,6(1):18-27.
    [23] PYL L, KALTEREMIDOU K-A, VAN HEMELRIJCK D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites[J]. Polymer Testing,2018,71:318-328. doi: 10.1016/j.polymertesting.2018.09.022
    [24] MEI H, ALI Z, ALI I, et al. Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites[J]. Advanced Composites and Hybrid Materials,2019,2(2):312-319. doi: 10.1007/s42114-019-00087-7
    [25] CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing,2019,26:94-105. doi: 10.1016/j.addma.2019.01.005
    [26] AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer[J]. Journal of Reinforced Plastics and Composites,2019,38(3):99-116. doi: 10.1177/0731684418807300
    [27] AL ABADI H, THAI H-T, PATON-COLE V, et al. Elastic properties of 3D printed fibre-reinforced structures[J]. Composite Structures,2018,193:8-18. doi: 10.1016/j.compstruct.2018.03.051
    [28] ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing,2018,22:157-164. doi: 10.1016/j.addma.2018.05.007
    [29] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing,2017,16:146-152. doi: 10.1016/j.addma.2017.06.004
    [30] OZTAN C, KARKKAINEN R, FITTIPALDI M, et al. Microstructure and mechanical properties of three dimensional-printed continuous fiber composites[J]. Journal of Composite Materials,2018,53(2):002199831878193.
    [31] MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures,2016,153:866-875. doi: 10.1016/j.compstruct.2016.07.018
    [32] NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing,2019,26:227-241. doi: 10.1016/j.addma.2018.12.020
    [33] VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B: Engineering,2019,160:684-692. doi: 10.1016/j.compositesb.2018.12.094
    [34] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [35] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B: Engineering,2018,148:93-103. doi: 10.1016/j.compositesb.2018.04.054
    [36] CAMINERO M A, GARCÍA-MORENO I, RODRÍGUEZ G P, et al. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites[J]. Composites Part B: Engineering,2019,165:131-142. doi: 10.1016/j.compositesb.2018.11.091
    [37] IMERI A, FIDAN I, ALLEN M, et al. Fatigue analysis of the fiber reinforced additively manufactured objects[J]. The International Journal of Advanced Manufacturing Technology,2018,98(9):2717-2724.
    [38] PERTUZ A D, DÍAZ-CARDONA S, GONZÁLEZ-ESTRADA O A. Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique[J]. International Journal of Fatigue,2020,13:105275.1-105275.12.
    [39] AZAROV A V, ANTONOV F K, GOLUBEV M V, et al. Composite 3D printing for the small size unmanned aerial vehicle structure[J]. Composites Part B: Engineering,2019,169:157-163. doi: 10.1016/j.compositesb.2019.03.073
    [40] DICKSON A N, ROSS K-A, DOWLING D P. Additive manufacturing of woven carbon fibre polymer composites[J]. Composite Structures,2018,206:637-643. doi: 10.1016/j.compstruct.2018.08.091
    [41] LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design,2018,137:235-244.
    [42] SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:114-121. doi: 10.1016/j.compositesa.2018.07.029
    [43] BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing,2018,22:176-186. doi: 10.1016/j.addma.2018.04.039
    [44] ZHANG H, YANG D, SHENG Y. Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study[J]. Composites Part B: Engineering,2018,151:256-264. doi: 10.1016/j.compositesb.2018.06.017
    [45] O’CONNOR H J, DOWLING D P. Evaluation of the influence of low pressure additive manufacturing processing conditions on printed polymer parts[J]. Additive Manufacturing,2018,21:404-412. doi: 10.1016/j.addma.2018.04.007
    [46] FERREIRA R T L, AMATTE I C, DUTRA T A, et al. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers[J]. Composites Part B: Engineering,2017,124:88-100. doi: 10.1016/j.compositesb.2017.05.013
    [47] LOVE L J, KUNC V, RIOS O, et al. The importance of carbon fiber to polymer additive manufacturing[J]. Journal of Materials Research,2014,29(17):1893-1898. doi: 10.1557/jmr.2014.212
    [48] NING F, CONG W, QIU J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B: Engineering,2015,80:369-378. doi: 10.1016/j.compositesb.2015.06.013
    [49] DUTY C E, KUNC V, COMPTON B, et al. Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials[J]. Rapid Prototyping Journal,2017,23(1):181-189. doi: 10.1108/RPJ-12-2015-0183
    [50] HILL C, ROWE K, BEDSOLE R, et al. Materials and process development for direct digital manufacturing of vehicles[C]//International SAMPE Technical Conference. USA, 2016.
    [51] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [52] LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology,2016,238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025
    [53] DUL S, FAMBRI L, PEGORETTI A. Fused deposition modelling with ABS-graphene nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2016,85:181-191. doi: 10.1016/j.compositesa.2016.03.013
    [54] TIAN X, LIU T, WANG Q, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites[J]. Journal of Cleaner Production,2017,142:1609-1618. doi: 10.1016/j.jclepro.2016.11.139
    [55] DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures,2019,212:381-388. doi: 10.1016/j.compstruct.2019.01.050
    [56] SHOFNER M L, LOZANO K, RODRÍGUEZ-MACÍAS F J, et al. Nanofiber-reinforced polymers prepared by fused deposition modeling[J]. Journal of Applied Polymer Science,2003,89(11):3081-3090. doi: 10.1002/app.12496
    [57] SEBERT A, NELSON J W, BERTACCO G. Anisotropic mechanical performance of 3D printed polymers[C] //Advanced Materials-Tech Connect Briefs 2017. 2017: 170.
    [58] SWOLFS Y, PINHO S T. 3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the translaminar fracture toughness[J]. Compo-sites Science and Technology,2019,182:107731.
    [59] GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies,2019,4(1):1800271.
    [60] G. G. “3D printing for continuous composites with continuous fibre.” Inc.: Cincinnati, OH, USA.
    [61] ATHREYA S R, KALAITZIDOU K, DAS S. Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding[J]. Composites Science and Technology,2011,71(4):506-510. doi: 10.1016/j.compscitech.2010.12.028
    [62] ZHU D, REN Y, LIAO G, et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling[J]. Journal of Applied Polymer Science,2017,134(39):45332. doi: 10.1002/app.45332
    [63] LUO M, TIAN X, ZHU W, et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research,2018,33(11):1632-1641. doi: 10.1557/jmr.2018.131
    [64] RAHIM T N A T, ABDULLAH A M, MD AKIL H. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites[J]. Polymer Reviews,2019,59(4):589-624. doi: 10.1080/15583724.2019.1597883
    [65] TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [66] LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
    [67] PARANDOUSH P, ZHOU C, LIN D. 3D printing of ultrahigh strength continuous carbon fiber composites[J]. Advanced Engineering Materials,2019,21(2):1800622.
    [68] MATSUZAKI R, NAKAMURA T, SUGIYAMA K, et al. Effects of set curvature and fiber bundle size on the printed radius of curvature by a continuous carbon fiber composite 3D printer[J]. Additive Manufacturing,2018,24:93-102. doi: 10.1016/j.addma.2018.09.019
    [69] FU S Y, LAUKE B, MÄDER E,et al. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing,2000,31(10):1117-1125. doi: 10.1016/S1359-835X(00)00068-3
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  1768
  • HTML全文浏览量:  791
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-07
  • 录用日期:  2021-01-10
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回