留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用

黄鹏 郑振荣 毛科铸 罗丽娟 徐依朋 杨铁鑫

黄鹏, 郑振荣, 毛科铸, 等. 热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用[J]. 复合材料学报, 2021, 38(9): 3053-3063. doi: 10.13801/j.cnki.fhclxb.20210108.002
引用本文: 黄鹏, 郑振荣, 毛科铸, 等. 热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用[J]. 复合材料学报, 2021, 38(9): 3053-3063. doi: 10.13801/j.cnki.fhclxb.20210108.002
HUANG Peng, ZHENG Zhenrong, MAO Kezhu, et al. Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3053-3063. doi: 10.13801/j.cnki.fhclxb.20210108.002
Citation: HUANG Peng, ZHENG Zhenrong, MAO Kezhu, et al. Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3053-3063. doi: 10.13801/j.cnki.fhclxb.20210108.002

热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用

doi: 10.13801/j.cnki.fhclxb.20210108.002
基金项目: 天津市自然科学基金 (18JCYBJC86600)
详细信息
    通讯作者:

    郑振荣,博士,教授,硕士生导师,研究方向为功能纺织品的制备和性能研究  E-mail:zhengzhenrong@tiangong.edu.cn

  • 中图分类号: TB332

Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics

  • 摘要: 为评价热阻塞效应对有机硅树脂-碳纤织物复合材料防热的贡献,根据有机硅树脂的烧蚀防热机理建立热响应过程数学模型,预测了有机硅树脂-碳纤织物复合材料的背面温度以及有机硅树脂的热物性参数,重点分析了热阻塞效应对有机硅树脂-碳纤织物复合材料防热性能的影响。结果表明在400 kW/m2的热流烧蚀下,有机硅树脂-碳纤织物复合材料40 s前热阻塞效应大部分来自有机硅树脂分解产生的引射气体,40 s后则完全来自于炭燃烧产生的引射气体;阻塞因子在10 s时达到最小,此刻阻挡了121.6 kW/m2的热流进入有机硅树脂内,在整个烧蚀过程中热阻塞效应减少了4.1%的总热量进入有机硅树脂内;在热物性参数中,热阻塞效应对有机硅树脂密度影响最大,导热系数和比热容次之;与增加逸出气体质量流率相比,延长有机硅树脂逸出气体的时间更能显著提高热阻塞效应,达到更好的防热效果。

     

  • 图  1  有机硅树脂-碳纤织物复合材料烧蚀前后外观图

    Figure  1.  Appearance of the silicone resin-carbon fiber fabrics composite before and after ablation ((a) Cross-sectional view before ablation; (b) Side view of a corner of the silicone resin peeled off after ablation)

    图  2  烧蚀表面能量守恒

    Figure  2.  Energy conservation of ablation surface

    Ψ—Blocking factor; qw—Heat flow; ${\dot m_{\rm{g}}}$ —Mass flow rate of pyrolysis gas; Hg—Decomposition enthalpy of silicone resin; ε—Surface emissivity of silicone resin; σ—Stephen-Boltzmann constant; Tw—Surface temperature of the silicone resin; Tamb—Ambient temperature; qb—Heat flow into the interior of silicone resin; ${\dot m_{\rm{c}}} $—Mass flow rate of carbon combustion gas; Hc— Enthalpy of carbon combustion

    图  3  有机硅树脂-碳纤织物复合材料几何模型

    Figure  3.  Geometric model of silicone resin-carbon fiber fabrics

    图  4  有机硅树脂-碳纤织物复合材料实验和模拟背温变化对比

    Figure  4.  Comparison of experiment and simulation data of silicone resin-carbon fiber fabrics composite backside temperature change

    图  5  模拟的有机硅树脂-碳纤织物复合材料整体平均温度

    Figure  5.  Simulated overall average temperature of silicone resin-carbon fiber fabrics composite

    图  9  有机硅树脂热解和炭燃烧产生气体的质量通量

    Figure  9.  Mass flux of gas produced by pyrolysis of silicone resin and carbon combustion

    图  6  有机硅树脂的热重分析

    Figure  6.  Thermogravimetric analysis of silicone resin

    图  7  有机硅树脂裂解气体的FTIR 3D图谱

    Figure  7.  3D FTIR spectrum of the pyrolysis gas of silicone resin

    图  8  有机硅树脂热解气体离子流强度随时间的变化

    Figure  8.  Change of ion intensity of silicone resin pyrolysis gas with time

    图  10  阻塞热流和阻塞因子随时间的变化情况

    Figure  10.  Changes in block heat flow and block factor over time

    图  11  有机硅树脂的密度在Y轴方向上梯度变化

    Figure  11.  Changes in density of silicone resin in the Y-axis direction

    图  13  有机硅树脂的比热容在Y轴方向上梯度变化

    Figure  13.  Changes in specific heat capacity of silicone resin in the Y-axis direction

    图  12  有机硅树脂的导热系数在Y轴方向上梯度变化

    Figure  12.  Changes in thermal conductivity of silicone resin in the Y-axis direction

    图  14  有机硅树脂-碳纤织物复合材料背部温度随时间的变化

    Figure  14.  Changes in backside temperature of silicone resin-carbon fiber fabrics composite over time

    图  15  有机硅树脂-碳纤织物复合材料背面温度随逸出气体质量流率的变化

    Figure  15.  Changes of the backside temperature of the silicone resin-carbon fiber fabric composite material with the mass flow of the pyrolysis gas

    图  16  有机硅树脂-碳纤织物复合材料背面温度随延长气体逸出时间的变化

    Figure  16.  Change of back temperature of silicone resin-carbon fiber fabric composite with prolonged gas escape time

    表  1  材料的物性参数

    Table  1.   Physical parameters of materials

    Material attributesValue
    Ambient temperature, Tamb/K 290.15
    Density of the carbon fibers, ρf/(kg·m−2) 796.18
    Original density of the silicone resin, ρ0/(kg·m−2) 1223.40
    Carbonized density of the silicone resin, ρc/(kg.m−2) 530.25
    Thermal conductivity of the carbon fibers, kf/[W·(m2·K)−1] 0.4555
    Thermal conductivity of the original silicone resin, k0/[W·(m2·K)−1] 0.336
    Thermal conductivity of the carbonized silicone resin, kc/[W·(m2·K)−1] 1.280
    Specific heat capacity of the carbon fibers, Cpf/[J·(kg·K)−1] 3739.4
    Specific heat capacity of the original silicone resin, Cp0/[J·(kg·K)−1] 1554.91
    Specific heat capacity of the carbonized silicone resin, Cpc/[J·(kg·K)−1] 1707.90
    Specific heat capacity of pyrolysis gas, Cpg/[J·(kg·K)−1] 2103[24]
    Specific heat capacity of carbon combustion gas, Cpcg/[J·(kg·K)−1] 1130[24]
    Convection heat transfer coefficient, h/[W·(m2·K)−1] 5[16]
    Surface emissivity of the silicone resin, ε1 0.89[16]
    Surface emissivity of the carbon fibers, ε2 0.36[16]
    Enthalpy of Pyrolysis of the silicone resin, Hg/(kJ·kg−1) 418.68[16]
    Formation enthalpy of carbon monoxide, Hc/(kJ·kg−1) 130.6[24]
    The pre-exponential factor, A/s−1 1400[24]
    Decomposition activation energy of silicone resin, E/(kJ·mol−1) 71.14[16]
    Reaction order, n 3[24]
    Mass fraction of silicone resin, ɑp 25%[17]
    Percentage of silicone resin vaporization, fp 13%[17]
    下载: 导出CSV

    表  2  有机硅树脂-碳纤织物复合材料烧蚀前后尺寸参数

    Table  2.   Dimensional parameters of silicone resin-carbon fiber fabrics composite before and after ablation

    Before carbon fiber fabrics ablationAfter carbon fiber fabrics ablationBefore silicone resin ablationCavity
    Length/mm 110 103 110 103
    Width/mm 110 103 110 103
    Thickness/mm 0.20 0.20 1.47 1.26
    下载: 导出CSV
  • [1] HE Chen, LI Boqian, REN Ying, et al. How the crosslinking agent influences the thermal stability of RTV phenyl silicone rubber[J]. Materials,2019,12(1):88.
    [2] CHEN W, ZENG X. Synergistic effect and mechanism of platinum catalyst and nitrogen-containing silane on the thermal stability of silicone rubber[J]. Thermochim Acta,2016,632:1-9. doi: 10.1016/j.tca.2016.03.008
    [3] 李霞. 热防护有机硅耐高温涂料研究[D].北京: 航天动力技术研究院, 2015.

    LI Xia. Research on thermal protection organosilicon high temperature coating[D]. Beijing: Academy of Aerospace Soild Propulsion Technology, 2015(in Chinese).
    [4] 李伟, 方国东, 李玮洁, 等. 碳纤维增强复合材料微观烧蚀行为数值模拟[J]. 力学学报, 2019, 51(3):835-844.

    LI Wei, FANG Guodong, LI Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):835-844(in Chinese).
    [5] GUO J, HUANG J, HUANG H M, et al. Novel formula for pyrolysis rate of charring materials under different heating rates[J]. Acta Astronaut,2020,171:352-358. doi: 10.1016/j.actaastro.2020.03.020
    [6] BETHE H A, ADAMS M C A. Theory for the ablation of glassy materials[J]. Journal of the Aero/Space Sciences,1959,26(6):321-328, 350. doi: 10.2514/8.8080
    [7] HIDALDO H. Ablation of glassy material around blunt bodies of revolution[J]. Journal of American Rocket Society,1960,30(9):806-814.
    [8] HYO K A, CHUL P T, KEISUKE S. Dynamics of pyrolysis gas in charring materials ablation[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. United States, Reno: American Institute of Aeronautics and Astronautics, Inc, 1998: 165.
    [9] MOHAMMADIUN H, MOHAMMADIUN M. Numerical modeling of charring material ablation with considering chemical-reaction effects[J]. Mass Transfer and Surface Heat Transfer,2013,38(9):2533-43.
    [10] 杨德军, 李旭东. 碳/碳复合材料烧蚀热响应的数值分析[J]. 化工新型材料, 2013, 41(10):79-81. doi: 10.3969/j.issn.1006-3536.2013.10.026

    YANG Dejun, LI Xudong. Numerical analysis of ablation thermal response of carbon/carbon composites[J]. New Chemical Materials,2013,41(10):79-81(in Chinese). doi: 10.3969/j.issn.1006-3536.2013.10.026
    [11] 严旭, 王洪波, 范新中, 等. 硅橡胶基防热涂层动态烧蚀行为及机理研究[J]. 宇航学报, 2020, 5:617-623.

    YAN Xu, WANG Hongbo, FAN Xinzhong, et al. Study on dynamic ablative behavior and mechanism of silicone rubber based thermal protective coating[J]. Journal of Astronautics,2020,5:617-623(in Chinese).
    [12] 朱燕伟, 孟松鹤, 易法军, 等. 碳/酚醛复合材料烧蚀行为预报方法[J]. 复合材料学报, 2016, 33(5):984-990.

    ZHU Yanwei, MENG Songhe, YI Fajun, et al. Forecasting method for ablation behaviors of carbon/phenolic composites[J]. Acta Materiae Compositae Sinica,2016,33(5):984-990(in Chinese).
    [13] LI W J, HUANG H M, TIAN Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation[J]. International Journal of Heat and Mass Transfer,2015,84:245-52. doi: 10.1016/j.ijheatmasstransfer.2015.01.004
    [14] 时圣波, 梁军, 刘志刚, 等. 高硅氧/酚醛复合材料烧蚀环境下的吸热机理[J]. 固体火箭技术, 2013, 36(1):113-118.

    SHI Shengbo, LIANG Jun, LIU Zhigang, et al. Endothermic mechanism of silica/phenolic composite under ablative environment[J]. Journal of Solid Rocket Technology,2013,36(1):113-118(in Chinese).
    [15] LI W, ZHANG J, FANG G D, et al. Evaluation of numerical ablation model for charring composites[J]. Science China Technological Sciences,2019,62(8):1322-1330. doi: 10.1007/s11431-018-9476-2
    [16] ZHENG Z R, ZHI W, MAO K Z, et al. Numerical analysis of ablative behavior of silicone resin coated carbon fabric[J]. Pigment and Resin Technology,2020,50(1):66-73.
    [17] 国义军, 石卫波, 曾磊, 等, 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019.

    GUO Yijun, SHI Weibo, ZENG Lei, et al. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019(in Chinese).
    [18] 张拜, 李旭东. 碳/酚醛防热复合材料烧蚀行为的数值模拟[J]. 复合材料学报, 2018, 35(10):2786-2792.

    ZHANG Bai, LI Xudong. Numerical simulation of ablation behavior of carbon/phenolic thermal protection system composite[J]. Acta Materiae Compositae Sinica,2018,35(10):2786-2792(in Chinese).
    [19] MEND S H, ZHOU Y J, XIE W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites[J]. J Spacecraft Rockets,2016,5(5):930-935.
    [20] PENG Lina, HE Guoqiang, LI Jiang, et al. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor[J]. Carbon,2012,50(4):1554-1562. doi: 10.1016/j.carbon.2011.11.034
    [21] CHEN Y K, MILOS F S. Navier-Stokes solutions with finite rate ablation for planetary mission earth reentries[J]. Journal of Spacecraft & Rockets,2005,42:961-970.
    [22] ZHANG B, LI X D. Numerical simulation of thermal response and ablation behavior of a hybrid carbon/carbon composite[J]. Applied Composite Materials,2018,25(3):675-688. doi: 10.1007/s10443-017-9645-1
    [23] GUO J, HUANG H M, XU X L. Protective effect of pyrolysis gases combustion against surface ablation under different mach numbers[J]. Acta Astronaut,2020,166:209-17. doi: 10.1016/j.actaastro.2019.10.032
    [24] 张拜. 防热材料烧蚀行为和热响应的数值仿真研究[D]. 兰州: 兰州理工大学, 2019.

    ZHANG Bai. Numerical simulation on ablation behavior and thermal response of thermal protection materials[D]. Lanzhou: Lanzhou University of Technology, 2019(in Chinese).
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  984
  • HTML全文浏览量:  518
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 录用日期:  2020-12-30
  • 网络出版日期:  2021-01-11
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回