留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2改性竹纤维/乙烯基树脂复合材料界面相容性

徐灿 陆继倾 白天 程万里 王戈 程海涛 韩广萍

徐灿, 陆继倾, 白天, 等. 纳米SiO2改性竹纤维/乙烯基树脂复合材料界面相容性[J]. 复合材料学报, 2021, 38(9): 2776-2786. doi: 10.13801/j.cnki.fhclxb.20210104.003
引用本文: 徐灿, 陆继倾, 白天, 等. 纳米SiO2改性竹纤维/乙烯基树脂复合材料界面相容性[J]. 复合材料学报, 2021, 38(9): 2776-2786. doi: 10.13801/j.cnki.fhclxb.20210104.003
XU Can, LU Jiqing, BAI Tian, et al. Interfacial compatibility of nano-SiO2 modified bamboo fiber/vinyl ester resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2776-2786. doi: 10.13801/j.cnki.fhclxb.20210104.003
Citation: XU Can, LU Jiqing, BAI Tian, et al. Interfacial compatibility of nano-SiO2 modified bamboo fiber/vinyl ester resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2776-2786. doi: 10.13801/j.cnki.fhclxb.20210104.003

纳米SiO2改性竹纤维/乙烯基树脂复合材料界面相容性

doi: 10.13801/j.cnki.fhclxb.20210104.003
基金项目: “十三五”国家重点研发计划项目 (2017YFD0600802);国家自然科学基金 (32071850)
详细信息
    通讯作者:

    韩广萍,博士,教授,博士生导师,研究方向为静电纺丝功能型纳米复合材料的制备及表征等  E-mail:guangping.han@nefu.edu.cn

  • 中图分类号: TB332

Interfacial compatibility of nano-SiO2 modified bamboo fiber/vinyl ester resin composites

  • 摘要: 以乙烯基树脂(VE)为基体,竹纤维(BF)为增强材料,通过偶联剂KH602对纳米SiO2进行改性处理,并利用改性后纳米SiO2分别对竹纤维和树脂进行改性处理,采用真空辅助树脂传递模塑成型工艺(VARTM)制备了BF/VE复合材料。采用FTIR、SEM对改性后纤维和树脂的表面物理化学状态进行表征,结果表明:改性纳米SiO2成功化学接枝到竹纤维表面且分散到树脂基体中,改性纳米SiO2在BF1/VE0.5 (用1.0wt%改性纳米SiO2改性纤维和0.5wt%改性纳米SiO2改性树脂)复合材料中分散更为均匀;采用力学试验机和SEM对复合材料力学、断口和表面形貌进行分析,考察改性纳米SiO2的添加量对BF/VE复合材料力学性能、界面性能的影响。结果表明:BF1/VE0.5复合材料的拉伸、弯曲及冲击强度分别达到最大值49.0 MPa、70.6 MPa和150.4 J/m,与未处理的复合材料相比分别提高了18.9%、26.1%、70.7%。此外,还初步探讨了改性纳米SiO2的界面增强机制。

     

  • 图  1  真空辅助树脂传递模塑成型技术(VARTM)制备BF/VE复合材料

    Figure  1.  Preparation of BF/VE composites by vacuum-assisted resin transfer molding (VARTM)

    图  2  纳米SiO2改性BF和VE的化学组成

    Figure  2.  Chemical compositions of BF and VE modified by nano-SiO2

    图  3  BF改性前后的SEM图像

    Figure  3.  SEM images of untreated and treated BF fiber

    图  4  纳米SiO2改性VE的SEM图像

    Figure  4.  SEM images of VE modified by nano-SiO2

    图  5  纳米SiO2在BF/VE复合材料中的分散均匀性

    Figure  5.  Dispersion uniformity of nano-SiO2 in BF/VE composites

    图  6  BF/VE复合材料断面SEM图像

    Figure  6.  SEM images of the fractured surface of BF/VE composites

    图  7  改性处理对BF/VE复合材料力学性能的影响

    Figure  7.  Effect of modification on the mechanical properties of BF/VE composites

    图  8  纳米SiO2界面改性机制

    Figure  8.  Interface modification mechanism of nano-SiO2

    表  1  竹纤维/乙烯基树脂(BF/VE)复合材料的改性及命名

    Table  1.   Modification and naming of bamboo fiber/vinyl ester resin (BF/VE) composites

    Name of sampleContent of nano-SiO2
    modifying bamboo fiber/wt%
    Content of nano-SiO2
    modifying resin/wt%
    BF/VE 0 0
    BF/VE0.5 0 0.5
    BF/VE1 0 1
    BF/VE1.5 0 1.5
    BF0.5/VE 0.5 0
    BF0.75/VE 0.75 0
    BF1/VE 1 0
    BF0.5/VE0.5 0.5 0.5
    BF0.75/VE0.5 0.75 0.5
    BF1/VE0.5 1 0.5
    下载: 导出CSV
  • [1] 徐贵海, 任子龙, 贾瑞婷, 等. 苎麻、黄麻织物增强环氧树脂复合材料力学性能的研究[J]. 纤维复合材料, 2015(3):13-17. doi: 10.3969/j.issn.1003-6423.2015.03.004

    XU Guihai, REN Zilong, JIA Ruiting, et al. Study on the mechanical properties of ramie and jute fabrics reinforced epoxy resin composites[J]. Fiber Composites,2015(3):13-17(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.03.004
    [2] 陈康, 何啸宇, 李文豪, 等. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20):20171-20176,20181. doi: 10.11896/cldb.19080192

    CHEN Kang, HE Xiaoyu, LI Wenhao, et al. Preparation and property characterization of lactic acid grafted bamboo fiber/polylactic acid composite[J]. Materials Reports,2020,34(20):20171-20176,20181(in Chinese). doi: 10.11896/cldb.19080192
    [3] 李霞镇, 任海青, 徐明, 等. 中国竹业概况及发展建议[J]. 综合述评, 2008, 6(4):1-4.

    LI Xiazhen, REN Haiqing, XU Ming, et al. Overview and development suggestions of Chinese bamboo industry[J]. Comprehensive Review,2008,6(4):1-4(in Chinese).
    [4] 郭豫吉, 邓首哲. 竹纤维性能及发展展望[J]. 中国麻业科学, 2008, 30(6):321-325. doi: 10.3969/j.issn.1671-3532.2008.06.008

    GUO Yuji, DENG Shouzhe. Performance and development prospect of bamboo fiber[J]. Plant Fiber Sciences in China,2008,30(6):321-325(in Chinese). doi: 10.3969/j.issn.1671-3532.2008.06.008
    [5] 李春燕, 吕春艳, 于丽丽, 等. 竹材阻燃处理及对其材性的影响[J]. 世界竹藤通讯, 2019, 17(6):16-20, 24.

    LI Chunyan, LV Chunyan, YU Lili, et al. Flame retardant treatment of bamboo and its effect on its properties[J]. World Bamboo and Rattan,2019,17(6):16-20, 24(in Chinese).
    [6] 李红波, 申胜平, 郭建刚. 基于修正剪滞模型的竹纤维/基体界面应力理论[J]. 复合材料学报, 2018, 35(8):2252-2259.

    LI Hongbo, SHEN Shengping, GUO Jiangang. Stress theory of bamboo fiber/matrix interface based on modified shear lag model[J]. Acta Materiae Compositae Sinica,2018,35(8):2252-2259(in Chinese).
    [7] 吴楠, 王康建, 刘才容, 等. 竹原纤维的性能及应用[J]. 纺织科技进展, 2016(3):4-5, 7. doi: 10.3969/j.issn.1673-0356.2016.03.002

    WU Nan, WANG Kangjian, LIU Cairong, et al. Performance and application of bamboo fiber[J]. Progress in Textile Science & Technology,2016(3):4-5, 7(in Chinese). doi: 10.3969/j.issn.1673-0356.2016.03.002
    [8] 邢声远, 刘政, 周湘祁. 竹原纤维的性能及其产品开发[J]. 纺织导报, 2004(4):43, 46, 48.

    XING Shengyuan, LIU Zheng, ZHOU Xiangqi. Properties and product development of bamboo fiber[J]. China Textile Leader,2004(4):43, 46, 48(in Chinese).
    [9] 林天扬, 王春红, 王威, 等. 碱处理提取竹黄纤维的响应曲面优化[J]. 复合材料学报, 2018, 35(4):876-884.

    LIN Tianyang, WANG Chunhong, WANG Wei, et al. Response surface optimization for extraction of bamboos fiber by alkali treatment[J]. Acta Materiae Compositae Sinica,2018,35(4):876-884(in Chinese).
    [10] 唐启恒, 任一萍, 郭文静, 等. 三聚氰胺聚磷酸盐添加量对竹/聚丙烯复合材料燃烧性能的影响[J]. 木材工业, 2020, 34(3):23-26, 31.

    TANG Qiheng, REN Yiping, GUO Wenjing, et al. Effect of the addition of melamine polyphosphate on the combustion properties of bamboo/polypropylene composites[J]. China Wood Industry,2020,34(3):23-26, 31(in Chinese).
    [11] 杨峰, 张淑琴, 崔艺铭, 等. 竹材缠绕复合材料推广应用中的耐久性问题[J]. 木材加工机械, 2018, 29(5):30-33.

    YANG Feng, ZHANG Shuqin, CUI Yiming, et al. Durability problems in promotion and application of bamboo filament wound composite materials[J]. Wood Processing Machinery,2018,29(5):30-33(in Chinese).
    [12] 陈吉平, 苏佳智, 韩小勇, 等. 复合材料工型肋的RTM工艺模拟与优化[J]. 玻璃钢/复合材料, 2017(7):82-87.

    CHEN Jiping, SU Jiazhi, HAN Xiaoyong, et al. Simulation and optimization of RTM process of composite rib[J]. Fiber Reinforced Plastics/Composites,2017(7):82-87(in Chinese).
    [13] 孙赛, 刘木金, 王海, 等. RTM成型工艺及其派生工艺[J]. 宇航材料工艺, 2010(6):21-23. doi: 10.3969/j.issn.1007-2330.2010.06.005

    SUN Sai, LIU Mujin, WANG Hai, et al. RTM molding process and its derivative process[J]. Aerospace Materials & Technology,2010(6):21-23(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.06.005
    [14] SUDARISMAN, MUHAMMAD B N R, AZIZ R H. Tensile and flexural properties of bamboo (Gigantochloa apus)fiber/epoxy green composites[J]. Applied Mechanics and Materials,2015,758:119-123. doi: 10.4028/www.scientific.net/AMM.758.119
    [15] ZEGAOUI A, DERRADJI M, MA R-K, et al. Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites[J]. Materials Chemistry and Physics,2018,213:146-156. doi: 10.1016/j.matchemphys.2018.04.012
    [16] 唐启恒, 程海涛, 王戈, 等. 竹纤维组合形态对竹纤维/聚丙烯复合材料性能的影响[J]. 复合材料学报, 2019, 36(11):2561-2567.

    TANG Qiheng, CHENG Haitao, WANG Ge, et al. Effect of bamboo fiber combination on the properties of bamboo fiber/polypropylene composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2561-2567(in Chinese).
    [17] SREEKUMAR P A, THOMAS S P, SAITER J M, et al. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding[J]. Composites Part A: Applied Science and Manufacturing,2009,40(11):1777-1784. doi: 10.1016/j.compositesa.2009.08.013
    [18] HUANG J-K, YOUNG W-B. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites[J]. Composites Part B: Engineering,2019,166:272-283. doi: 10.1016/j.compositesb.2018.12.013
    [19] WANG D, BAI T, CHENG W, et al. Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding[J]. Polymers (Basel),2019,11(12):2107.
    [20] WANG F, LU M, ZHOU S, et al. Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers[J]. Molecules,2019,24(15):2682.
    [21] DUN M, HAO J, WANG W, et al. Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding[J]. Composites Part B: Engineering,2019,159:369-377. doi: 10.1016/j.compositesb.2018.09.090
    [22] XIE Y, HILL C A S, XIAO Z, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(7):806-819. doi: 10.1016/j.compositesa.2010.03.005
    [23] WANG A, XIAN G, LI H. Effects of fiber surface grafting with nano-clay on the hydrothermal ageing behaviors of flax fiber/epoxy composite plates[J]. Polymers (Basel),2019,11(8):1278.
    [24] WANG H, XIAN G, LI H. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite[J]. Composites Part A: Applied Science and Manufacturing,2015,76:172-180. doi: 10.1016/j.compositesa.2015.05.027
    [25] 王春红, 王利剑, 任子龙, 等. SiO2-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J]. 复合材料学报, 2019, 7(7):1633-1639.

    WANG Chunhong, WANG Lijian, REN Zilong, et al. Influence of the synergistic modification of SiO2-bamboo fiber on the friction and wear properties of epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica,2019,7(7):1633-1639(in Chinese).
    [26] SHEN X, JIA J, CHEN C, et al. Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition[J]. Journal of Materials Science,2014,49(8):3225-3233. doi: 10.1007/s10853-014-8027-4
    [27] NGO T T, LAMBERT C A, BEN Z L, et al. Improving the compostability of natural fiber-reinforced thermoset composites with a tertiary oil phase[J]. Journal of Macromolecular Science: Part D—Reviews in Polymer Processing,2013,52(7):710-717.
    [28] SAHOO S K, MOHANTY S, NAYAK S K. Mechanical, thermal and interfacial characterization of randomly oriented short sisal fibers reinforced epoxy composite modified with epoxidized soybean oil[J]. Journal of Natural Fibers,2016,14(3):357-367.
    [29] 狄凯莹, 吕佳帅男, 蔡鹏麟, 等. 氟化硅氧烷改性环氧树脂的制备与性能[J]. 精细化工, 2021, 38(04): 774-781.

    DI Kaiying, LV Jiashuainan, CAI Penglin, et al. Preparation and properties of fluorinated siloxane modified epoxy resin[J]. Fine Chemical Engineering, 2021, 38(04): 774-781 (in Chinese).
    [30] ASTM. Standard test method for tensile properties of plastics: ASTM D638—14[S]. United States: ASTM International, 2014.
    [31] ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—17[S]. United States: ASTM International, 2017.
    [32] ASTM. Standard test methods for determining the izod pendulum impact resistance of plastics: ASTM D256—2010[S]. United States: ASTM International, 2010.
    [33] WANG H, SUN T, PENG C, et al. Effect of different silane coupling agents on cryogenic properties of silica-reinforced epoxy composites[J]. High Performance Polymers,2016,30(1):24-37.
    [34] DILFI K F A, CHE Z J, XIAN G J. Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite[J]. Journal of Zhejiang University-Science A,2019,20(9):660-674. doi: 10.1631/jzus.A1900186
    [35] 杨芳. 环氧树脂/KH602双重改性水性聚氨酯胶粘剂的合成及性能研究[J]. 涂料技术与文摘, 2015, 36(10):29-33, 38. doi: 10.3969/j.issn.1672-2418.2015.10.007

    YANG Fang. Synthesis and properties of epoxy resin/KH602 double modified waterborne polyurethane adhesive[J]. Coatings Technology and Abstract,2015,36(10):29-33, 38(in Chinese). doi: 10.3969/j.issn.1672-2418.2015.10.007
    [36] 冯跃战. 聚碳酸酯/SiO_2纳米复合材料的制备及力学与热性能研究[D]. 郑州: 郑州大学, 2015.

    FENG Yuezhan. Preparation and mechanical and thermal properties of polycarbonate SiO2 nanocomposites[D]. Zhengzhou: Zhengzhou University, 2015 (in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  948
  • HTML全文浏览量:  292
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 修回日期:  2020-12-11
  • 录用日期:  2020-12-28
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回